a2 United States Patent

Schlossberg et al.

US009566510B2

US 9,566,510 B2
Feb. 14, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(60)

(1)

GAME SYSTEM WITH INTERACTIVE
SHOW CONTROL

Applicant: Eddie’s Social Club, LL.C, New York,
NY (US)

Inventors: Edwin Schlossberg, New York, NY

(US); Jeremiah Harris, Greenwich, CT

(US)

Assignee: Eddie’s Social Club, LL.C, New York,
NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/695,538

Filed: Apr. 24, 2015

Prior Publication Data

US 2015/0301715 Al Oct. 22, 2015

Related U.S. Application Data

Division of application No. 14/559,625, filed on Dec.
3,2014, which is a continuation-in-part of application
No. 14/167,011, filed on Jan. 29, 2014.

Provisional application No. 61/757,964, filed on Jan.
29, 2013.

Int. CL.

AG63F 924 (2006.01)
AG63F 13/235 (2014.01)
AG63F 13/27 (2014.01)
AG63F 13/67 (2014.01)
AG63F 13/25 (2014.01)
F21V 23/04 (2006.01)
A63J 11/00 (2006.01)
AG63F 13/216 (2014.01)
AG63F 13/28 (2014.01)
AG63F 13/54 (2014.01)
AG63F 13/65 (2014.01)

ESC - The Stage

A
455 Audio Speakers Lighting
Wireless LAN [#----===-mnommemmmmoome e S5t e e

AG63F 13/795
GO6F 3/0481

(2014.01)
(2013.01)
(Continued)
(52)
A63F 13/235 (2014.09); A63F 13/216
(2014.09); A63F 13/25 (2014.09); A63F 13/27
(2014.09); A63F 13/28 (2014.09); A63F 13/54
(2014.09); A63F 13/65 (2014.09); A63F 13/67
(2014.09); A63F 13/795 (2014.09); A63J
11/00 (2013.01); F21V 23/045 (2013.01);
F21V 23/0442 (2013.01); GO6F 3/0488
(2013.01); GO6F 3/04812 (2013.01); AG3F
13/33 (2014.09)

Field of Classification Search
CPC AG63F 13/27; A63F 13/35; A63F 13/65;
A63] 11/00; F21V 23/045; F21V 23/0442;
F21V 23/0471; F21V 23/0478
USPC 446/175; 463/31
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5,795,228 A 8/1998 Trumbull et al.
6,166,496 A 12/2000 Lys et al.
6,769,790 B2 82004 Fruhm et al.

(Continued)

Primary Examiner — William H McCulloch, Jr.
Assistant Examiner — Chase Leichliter

(74) Attorney, Agent, or Firm — Law Office of Scott C
Harris, Inc

(57) ABSTRACT

An interactive game system that stage lighting style cues as
part of the game, where the stage lighting cues cause
external stage lighting equipment to create effects that are
based on outputs from the game. Steerable lights can be
steered to the player and sounds can be created that are
directed to the player. A simulation system can also simulate
the actions that occur. The computer assigns teams.

20 Claims, 12 Drawing Sheets

Show
Confrol

<%

* 421
i Video
i Projector|

PN
s
AN
/

415\@

Game Media Movas Device
From Table fo Table L

43/420
Motion Tracking

.
\

Big Screen
{Scoreboard)

US 9,566,510 B2

Page 2
(51) Imt. ClL
GO6F 3/0488 (2013.01)
A63F 13/33 (2014.01)
(56) References Cited
U.S. PATENT DOCUMENTS
6,891,655 B2 5/2005 Hunt
7,775,883 B2 8/2010 Smoot et al.
2002/0149940 Al* 10/2002 Fruhm F21S 2/00
362/286
2003/0057884 Al 3/2003 Dowling
2004/0092311 Al 5/2004 Weston et al.
2004/0102247 Al 5/2004 Smoot et al.
2004/0183775 Al 9/2004 Bell
2006/0072076 Al 4/2006 Smoot et al.
2012/0004031 Al* 1/2012 Barney AG63F 13/235
463/31
2012/0174145 Al* 7/2012 Frazier HO4H 60/33
725/14
2015/0209666 Al 7/2015 Harris et al.
2015/0297996 Al 10/2015 Konkle
2015/0301715 Al 10/2015 Schlossberg et al.

* cited by examiner

U.S. Patent

Feb. 14, 2017

Sheet 1 of 12

US 9,566,510 B2

Othersl” 19
150~ 151~
1000 Game Engine Game Server » Controler | 190
¥ ¥
155~ «—1 __Open
| HTTP — | Load XNPP Dats | ~182
105~ Open - Connect Using
Connecting XMPP Loaded Data
107 | oads Rost XMPP Loads Roster Data
A a§ giéegfs%r “71 sever || Discovers Game
— Engine
108~. FindsOniine | o
Controliers
160~
¥
110~ Registers ~1t Obtains Game -194
Controllers > | Regstaton [~
111~ Obtains OSCIP | _ Sends RIJAESS | 195
Address Communication
Sends Game Data » | Openstheright | 196
to Clients game view
Wait for all Wait to receive the
WS controlers fo Game Stert game start | 197
be ready... message
¥
LED 120
Stage | 121
Lights
—s MIDT 129

FIG. 1

US 9,566,510 B2

Sheet 2 of 12

Feb. 14, 2017

U.S. Patent

217859 ’ 0001X8LLY] 67540251 Z 914
M 05ieg | [Mpdd coleg
QMM mm,w A Zi Josiold | | L iosloid | |seqn] esiep mmwwwwmww wmmmwwm
ewsuy Big | | ewswn Big W
0Lz 00z~ | L 1567 i 74 m - eez
;;;;; B i m.._%wwmmmﬁ
108882014 A o
J08S80014 _
pusjg/diem j XOGN
| 0216186 T 0967l 07
0801X0261 | 009IX096Z 7" 77009 Emmmwgmm
JBindwon gdl ddl
153 WWMS IAG | (uomS Al £ 5¢e 0ee (54
u e y OF9 U0 IOIN] BT UD Iaid
| o L BIOSUDY | OBGABI | iCIN<-0S0
| o L Bugubiy olpny

m . m 012"

m B o 080
020619571 0952-1 '0ZI6-1957: ¢ 095Z- SSORIM,
0091X09SZ! 009LX09GZI00GLX09GZ: :009IX09SZ "

Oidfd 98 1 [Cidad 58 — syl I DB}
249 Y0eakeId] |LUD F0eakeld | | S ol IAQ -~~~ JoAIBS BUIED
poliLen pouLEn fauz suien XNG N
252~ 152 00~ QI

U.S. Patent Feb. 14,2017 Sheet 3 of 12 US 9,566,510 B2

Floor Dome

US 9,566,510 B2

Sheet 4 of 12

Feb. 14, 2017

U.S. Patent

¥ Ol

8|08 O} 8ig8] WOl
SBACIA BIPSIy swes)

{(preogeioos)
ussiog big

o

Josoid |
OIPIA “
|2y H

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa »| NY'T SS0J8JIM
Bunubi

sieyesds opny -GGy
~ P W
jOSU0T)
MOUS 00
s
09v abeg syy - 083

BupEIL LOROW
0cy

US 9,566,510 B2

Sheet 5 of 12

Feb. 14, 2017

U.S. Patent

Y

opelold
O3piA 7

AT

Q27100
Jsieg

G Ol

Pwm AN ER
S Jalieg
o T~ Jam |
lo| o asineQ BIGEIBBM
B I 75 v v ==
£65~_lo pajeibeul
sievEsg) |° mwmwmwﬁ \\ 025 0L8
WESH o - pajeibaul m
— N\ 925 | | Bugubn
%Y T
0es pajelfiaiu
o »| NYYT SSBISIAL
Bunybr siayesds oipny

100D
MOUS

004 % ~806

205

azefjalljeusly syl - 563

g 9ld

US 9,566,510 B2

Sheet 6 of 12

USBJ0SLONOoY

W

J—N

{swiory)
usesg big
009

Feb. 14,2017

U.S. Patent

o e e e » N7 SS9

) BB sieyeadg opny
I04ILI0T) nm

MOUS

suog Y] - 383

Sheet 7 of 12

Feb. 14, 2017

U.S. Patent

L9
Hm%m%%m enbiun)

BRG 1 H0 7 Y

US 9,566,510 B2

[Ji0susg UOROW

8031A8(]

{prengeInIg)
usaiog big

10JU07)
MOUS

NYT S8Rl

Bupy6I WW/\ w_ﬁmwwﬁmg«

Bl0RIROAL

4004 84} - 084

US 9,566,510 B2

Sheet 8 of 12

Feb. 14, 2017

U.S. Patent

8 ald
~OL8
~CL8 48 mmw
Heyong ¢S vozewy | [sondieue 9ificon e o8
zpesHeng | alEMpIE -
1 SUBSASWLIBI xmwmﬁ M Buaned s ha=] soeelod 669
(G LR d
(v Uibnid) aemeippiy (U 9B YN Loy) SPONIBONS
= B s Rt I A 7 e
#3) wewebeuey @Wo » SwED A 098 .
jUBAL I BUWBD) A e m%wmmmm
aImanig subus ales Aun | 158 | g w\m aen R U
{0y uibinged) aimmoippy ¥
57 uopeatunuog .Tw YOG .| WsuEog A] WOISAS
vakg! "1 21sn004 oipny !/N@m
W.m abipug swnuNy oUW nM 'y
#_[hun) weueBeuey | #7 {pupp) domen 200
usAZginewesy o L __ _ 008
MoNAS ddy SO wf ; Lo
T | 4
ST _
- i
U0 8800
WG tesepy F— UoBRInBIo) » ddy SO! TI AT R e
suBgawany {3sBiSHM) MIOMIBN
-0E8 028

US 9,566,510 B2

Sheet 9 of 12

Feb. 14, 2017

U.S. Patent

-

I E
™ - ™
{piogqels) JoneS ddiN) e |
4
e el mmEXL Tedl dediiX ddfiXicol
SIBILSPAID SAY o, \ p \
skey syeaud/ougnd xaup £ ;4 . %
—— {roog) Aeigy B0 ddiix {rooiB) Areigh el ddiNx {xo0iB) Ateig 1usio ddiNX
ko sl (2400 ‘++0 "0} b geun |1 (orao “++0 ') uiBrig gghiun (3400 “++0 '9) ubrid aefuun
2l uoneoo| sondieuy w w @
prsUng) dose w%.mm_g msﬁcmw&ﬁmﬁ dosspn Wﬁmﬁ
{ljoys) 1duos sayedeay piegaele sunury geduun sumuny qeAun aumuny geAuun
{uoipAd) yduwos uonensiBeyt sy il Hn) seddeim uibnid apAiun {#0y) saddesm uibnig gofn e-H080/E0NHw {30) saddesm uibnid agliun
{iBus) 1dung oukg swies) (40 aifio swen 083 {#0) o1boy swien 053 (§0) ;b0 sumn 053
{lreys) 1duog ouAs eipapy {1 swesy 083 J 1 ouwes) 093 | _ JeyonueD Bwes 083
626~ 076~ V26~ 401 xs0- oig oBfy) L £ SO - Yoo} pod
008 016
weibei wesAs alemyog

U.S. Patent Feb. 14,2017 Sheet 10 of 12 US 9,566,510 B2

P < P~
g & &3
> o
o & &
))
) o0 x
o fome
o L e
e
—
el
&
e L -
P~ P)
D e =
5 e o
Q & SRS
w - ™
To w2 £ o
B
s
Ty
(&
< <t
< il p
oy)
o A &3
o o
o3 o &3

US 9,566,510 B2

Sheet 11 of 12

Feb. 14, 2017

U.S. Patent

siiea) Inoum soureb Ul esn ko4

sieal & Unw sawsb u) asn Jod

M 3O m]
LS pEayiang GLIOpEsYBA pliopealiead ELIOpEaYBAYD 7 LDPRBLIRAD
_ UBsing | M UB8Iog |
~GZLL ~0LL

SUest 7 Uph sauiel Ul osn I st ¢ unim selweb U ash Jo.
5] [62) 821 UZ) o) 82 G o2 2z o) [B (B [z B o B O
o D OB OW £l M B0 ED IO DD RO IO ED D
01 BT OCEY DI OCEYED OOET O [Co o rENrE O s i o
(ZiOpesrg fLoRERIIAG PLDPEOUIBAGT 1QLIDPESUIBAD] (GIUSDERUIBAQ RIOREBUISAD] |[UDPEYIBAG
_ usaiog m | US8I0% m
-0ZLL ~60LL

siiest £ Ups sauieh ul o8n Jod sUEst g Ui soweb Ul o Jod
el Bz g Zoliem molng B oozl mmwn mmosn el B oo
AR R v e iy e R A R e R (il R (Vi IR e R e gl e R L R (AR R 1
Mo BT 0D D oED AT [0 oo omm moeElioo i |l oo
gliopestiieas FHopesiiong glicpeslieag gpEmpRsliea] | GO | pOpESUIAGY ICQIDDESHIBAT | {2040 1 HLISERBBAD
_ uasiog m m USR8 m
“GLLL 001

US 9,566,510 B2

Sheet 12 of 12

Feb. 14, 2017

U.S. Patent

aUB0s JBJoaU0D
BLIOY 0] SUIMe)

A
L7~

CECl ~
LEdh .

0E2L
SITARN

~B

ndus Jesn:

AAARN
<proweds joj suaos m
1B}j04U0T SpEO;
U80S Jalolues
Loy 0} swinal

VzzL -

1

A AR AW

G2~ 1 21 "9l 1
nugeleh | : 018=U0R00
i <prowebs=awebyn b e, SRRV o
T wopuweeo 050 H | 3z m,mm wwmmvamammnwmmﬁga
| cSjusag-iedoeasp-ouely
o <suaAs-adoprap-awels |
- PUZPUNG sREREN vOLl~
n pasneqsuied - <prelefyzouefiasned H . %@Emmwwwﬂw%wmmgﬁg -
= Lejgpunal - 802~
] : ||, |<squnus=Ro cequnb=puncs| | | UBIS=UoRU0 |
lEygaued ‘<p-otpbo=saueiyns ‘<pr-oueh> = alurbpusLIeg
- coppenendenan P | 2L
o coEpenEAhe
- sseippepessisiba =
%mm -BLEL
| <pi-oweb>'<xepulusios -
«s88.ppe>:palajsibay
: g
| <Prewehy’<xepuHusio> L
‘<55auppes palalsibel 2021~
= pugeweh - <prewebszswelindk M _A@,me%mmmwm%m%&ﬁ% -
912l Wk - <Pl=<B-aWEi>
T4 ’ 5
N Cepis=conn-oweBs soued
1 L 1
mwmm‘/wé mwmw./m JeyouneT suies) | HITARN ddy jus00

d

US 9,566,510 B2

1

GAME SYSTEM WITH INTERACTIVE
SHOW CONTROL

This is a divisional of application Ser. No. 14/559,625,
filed Dec. 3, 2014, which was a continuation in part of Ser.
No. 14/167,011, filed 29 Jan. 2014, which claims priority
from 61/757,964, filed Jan. 29, 2013, the entire contents of
all of which are herewith incorporated by reference.

BACKGROUND

Today’s game systems typically run on a computer plat-
form. The computer can run the games, and also produces
outputs to interact with the players, and receives inputs from
those players. For example, the gaming system operates by
automatically interacting with the players and producing
sounds.

SUMMARY

The present application describes a game system that uses
a number of servers that each interact with one another, and
can automatically interact with multiple different external
devices.

The device interacts with show control devices, e.g., stage
lighting, as part of a game system. This enables lighting
effects to be created in a room that are controlled by and
synchronized with the game.

Another aspect describes player controlled and/or syn-
chronized show control based on actions in an interactive
game.

Another aspect describes an emulator that emulates not
only actions in the game, but also in the room housing the
game.

Embodiments describe the way that events and states are
sent between computers in a way that maintains the syn-
chronization between the computers. Another aspect of this
allows this to be done in the context of an interactive game,
and indicates how the players can enter the game via events
and states.

Another embodiment describes more detail about how
player positions are monitored and maintained and tracked.
One aspect of this embodiment describes a game system
where the game starts when users are properly in place

BRIEF DESCRIPTION OF THE DRAWINGS

in the drawings:

the figures show aspects of the invention, where;

FIG. 1 shows a block diagram showing the operation of
the interconnecting computers making up the invention;

FIG. 2 shows a block diagram of computers of an embodi-
ment;

FIG. 3 shows a specific gaming room or area according to
a first embodiment;

FIG. 4 shows a second gaming room or area called the
stage;

FIG. 5 shows another gaming room or area which has
barriers for detecting locations of people;

FIG. 6 shows another gaming room or area with a big
screen dome;

FIG. 7 shows another gaming room with an interactive
floor;

10

20

25

35

40

45

50

60

65

2

FIG. 8 illustrates a block diagram showing the different
processing systems which are used according to an embodi-
ment;

along with FIG. 8;

FIG. 9 shows a software system diagram used along with
the embodiment of FIG. 8;

FIG. 10 shows an exemplary layout for different players;

FIG. 11 shows different team arrangements for the play-
ers; and

FIG. 12 shows an overall flow diagram between the
different modules.

DETAILED DESCRIPTION

Embodiments described herein that uses multiple differ-
ent cascading servers in order to carry out game functions in
a special light and/or sound controllable room. The servers
enable many different devices to be integrated into the game.
One advantage of this system is that this enables peripherals
to be used of a type which are not normally used in games.

For example, one embodiment describes producing stage
lighting style cues as part of the game, where the stage
lighting cues cause external stage lighting equipment to
create effects that are based on things that happen in the
game. In essence, the game controls the cues, thereby
causing the game to control outputs that have previously
been controlled only as part of the stage lighting system.
This creates interactive stage lighting effects that become
part of the game experience.

One aspect is that the game is specifically configured or
“tuned” for a specific room. The specific rooms that can be
used are described throughout this specification. In one
embodiment, there can be a special gaming area, that has
multiple different rooms for multiple different formats of
games. The embodiments are shown in the figures and
described herein.

FIG. 1 illustrates a flow of the game, and shows the
interaction of the various servers. According to an embodi-
ment, there are a number of controllers, and each player uses
one controller. The controllers in this embodiment are por-
table computers with input capability and display screens
and sound output. An embodiment uses an [POD TOUCH™
controller, however, any portable computer can be used for
this purpose.

As illustrated in FIG. 1, the basic system includes a game
engine 100, connected to a game server 150, which is
connected via a wireless connection 151 to one or more
controllers. The controllers are shown as controller 190 and
controller 191. The wireless connection can be any kind of
connection, such as Bluetooth, Wi-Fi, or cellular.

In operation, the game server operates by starting two
different connections. An HTTP connection 155 is initially
used to discover and configure the controllers, such that
subsequent communication can be directly from the game
engine 100 discussed herein, to the controllers. The game
server also starts an XMPP server 160 that sends messages
back and forth to the controllers.

The HTTP server instructs the controller to open, and to
load XM PP data as shown as 192 in FIG. 1. Roster data is
then connected, and the XM PP server serves as a gateway
to the game engine 100 which is operated as described
herein. At 194, the controller then obtains game registration
information directly from the game engine, and sends a
unique address such as an IP address at 195. At 196 the
controller opens the game view that is sent from the game
engine.

US 9,566,510 B2

3

The game engine flow is shown as on the left side of FIG.
1, where the system first opens and contacts the XM PP
server. Each of the clients is a controller that has commu-
nicated with the XM PP server. At 107, the game engine
loads a roster of those clients, and from that at 108 finds the
online controllers. Different controllers can be online at
different times. This presupposes that all the controllers have
been preconfigured, but another embodiment can allow
users to use their own units such as their own smart phones
or tablets, and the action of finding the controllers and
finding the roster may include finding the user’s online
controllers.

In one embodiment, the user’s personal smartphone or
tablet is used as the controller in the game. The game is
carried out within a pay-to-enter facility also referred to
herein as the multiplex, so the users must pay in order to go
in. In one embodiment, when the users pay, actions are taken
to automatically register the smart phone/tablet to allow that
smart phone/tablet to interact with the game. In this way, two
tiers of admission can be possible. People can be admitted
but not allowed to play the games, in essence only specta-
tors. Those people might be charged a first admission fee,
which is a lower version of the admission fee. However,
those users will be prohibited from interacting with the
game. Users who want to play in the game are charged a
different level, presumably higher, admission fee. This pro-
duces the advantage that the users can either accompany
someone else who is playing without getting charged a
higher rate, or can simply go in to look around. More details
about the specific area are described herein as the different
parts of the multiplex.

Once a controller is registered, at 110 game engine begins
communicating directly via 111 to the registered controller.
The game engine receives the controller’s IP address at 111
and sends the game data to the clients, causing those clients
to open their game view. When all controllers are ready at
115, again start message is sent to the controllers, and the
controllers begin the game at 197.

In one embodiment, a number of different computers can
be used as part of either the game engine or the game server,
to communicate with external devices. One embodiment can
be use an LED wall 120 to receive the game outputs, so that
the LED wall becomes part of the game operation. Other
outputs to other professional caliber devices can also be
used. For example, outputs can be to the stage lights 121 or
to MIDI 122. An embodiment can send MIDI information to
an external MIDI device that may produce the sounds.
Different outputs can send cue information, e.g., in DMX-
512 format, to various parts in the room.

FIG. 2 illustrates a block diagram of the overall system,
including the different parts of the system. The game server
150 communicates with the game engine 110 as described
previously. In addition, the game server produces sound
outputs 210 which can be in open sound control or OSC
format. The OSC format outputs can be converted to MIDI
by a converter 215. The MIDI outputs can create both audio
playback via the MIDI controller and also an audio output
220. The OSC output can also create MIDI which creates
lighting output via a lighting console 225. The lighting
console 225 may control a stage lighting media server such
as the M box 230. This in itself can control stage lighting
projectors and lighting devices including a Marquee projec-
tor 235, as well as wash style lighting, such as the versa
tubes at 240 which are light controllable and dimmable
tubular elongated light devices.

The game engine may also produce outputs which are
combined together by warp processors and DVI switches

10

15

20

25

30

35

40

45

50

55

60

65

4

250 with canned playback. For example, the canned play-
back may include different forms of playback shown as 251
and 252. The canned playback can be lighting cues, video
output, or sound output. The output can also control cinema
projectors 255, 260. In addition, this can control either
directly or through a separate computer LED walls 207.

In essence, this becomes player controlled show control,
where show control is used to control the aspects of the
game under control of the game, and based on actions that
occur in the game. Unlike previous systems in which the
game designer created the content, this enables a lighting or
audio designer to create content that is used in the game. The
content created by the lighting or audio designer formed into
a pallet of cues where each cue controls multiple different
lighting devices and/or sound devices to create an effect. The
game design selects one or more of those cues to be
displayed. The cues can be sound, light, fog or any other
stage controlled feature.

The sound can be played in the area, but can also be
played on the handheld controlling device as part of the
game. Lighting can also be controlled to appear on the
screen of the mobile device.

Another aspect keeps track of the locations of the different
controllers, within the area and uses the player’s location in
the real world as an input for the virtual world game. For
example, if player 1 is at location x1, y1 in the area, the
system can automatically determine that, and can produce
game outputs that are directed to the area location x1, y1 to
illuminate or make sounds to the player. In one game, for
example, when the player meets a milestone, the player
automatically receives certain sounds and/or a lighting
effects such as a spotlight that shines on the player. In this
embodiment, the system can keep track of the location of the
player. When the player meets that milestone, the sound can
automatically be played in that location.

Another embodiment describes an emulator, for the game,
that shows what the game will look like with people in the
room in the arena shown herein. This emulates the real space
but also controls the real space.

An embodiment uses this system into form a multiplex
gaming destination, that combines live action, digital, and
social gaming in a spectacularly immersive environment.
The multiplex embodiment described herein and as shown in
FIG. 3, has four different game theaters, combined with a
large restaurant and several smaller cafes and bars. The
theaters in one embodiment are intended to be flexible,
modular spaces equipped with immersive media capabili-
ties. The four game theaters can include the World, the
Arena, the Cabaret, the Floor, each described herein. Each
theater supports a different gaming platform. These spaces
also accommodate some form of queuing, which in most
theaters acts as a comfortable viewing area for spectators as
well.

Each of the different theaters can be an immersive theater
with large screen projections and theatrical lighting and
sound systems that together create a variety of “worlds.”
Players arrayed on an open floor in front of the screens, act
together or individually to control what happens in the
World. Each player uses a digital device—a tablet—to
communicate with the screen. Holding the device in both
hands, players move their avatars on the screen to direct the
action. The devices have a vibration capability, which also
creates tactile responses to play. The embodiment described
herein describes different games which are intended for play
in a different theater. A brief description of the games
follows.

US 9,566,510 B2

5

Game 1: Spotter Players see a changing crowd of recog-
nizable celebrities on the large screen, A list of celebrities’
names appears on each player’s device, along with as unique
hat avatar. Using their digital devices, players guide their
hats across the large screen and onto the heads of celebrities.
The player who gets the most hats on the most celebrities
from his or her list wins the game. As the rounds progress,
the numbers of celebrities increase, and the players receive
Apples and Eggs to knock off other players hats, thus
lowering their scores. Game 2: SnB On the large screen,
players see thousands of particles streaming across the
screen. Using a hand-held digital device, each player con-
trols an on-screen Turret that sucks up the particles. By
rotating the device, players try to position the Turret to suck
up the most particles (thereby getting points). At the same
time, they must avoid big, bad, red particles (which lose
them points) by blowing them away. To do so, they tap a
“blow” icon on their hand-held devices, which makes the
Turret blow instead of suck. The players compete in two
teams, with the winning team being the one with the most
points after three rounds.

FIG. 4 illustrates a first gaming room referred to as the
stage. This device includes tables and chairs along with
environmental lighting with programmable spotlights. FIG.
4 shows only a few of these lights 400, 402, however it
should be understood that there can be many of these lights.
Any of these lights can be pan and tilt controllable lights. In
addition to the lighting, there are also tables shown as 410,
412 and 414. The controller device shown as 415 can be
moved from table to table, as the users move from table to
table. Also, a motion tracking device 420 can detect the
location of the device 415. Again, only one device is shown,
although it should be understood that many different devices
can be used in the system.

A video projector 421 is shown associated with the table
412, however, the different tables 410, 412, 414 can each
include their own video projector or the video projector can
be pan and tilt controllable. For example, this can use a
digital light configured as a video projector.

In operation, the CPU 450 can include all or any of the
controllers previously discussed. The CPU controls each of
the devices according to the game engine. A wireless LAN
device 455 communicates with each of the devices. In
addition, the CPU produces show control outputs which
control a show control device 460 such as a lighting console.
Outputs from the console are displayed on the display screen
470.

The tables can be a series of multi-touch tables and a
number of large displays. Players can use their tablets and
the table as input devices for each game. The multi-touch
table can detect discrete objects placed on the table and can
distinguish between objects using unique identifiers which
could be RFID based devices or the unique shapes of the
items. Items from the bar/restaurant have built in identifiers
and allow patrons to interact with the tables. The tables can
also include touch screens. LCD touchscreen tables such as
the Samsung SUR40 can be used to provide the required
sensing technology. The large projection screen can be tied
to the games on the tables or stand alone. Cameras provide
live feeds and can pinpoint players and show them on the
large projection; games are support by multi-channel audio
and a theatrical lighting system.

FIG. 5 represents a different immersive environment
referred to as the “arena”. The arena includes raised floors
with ramps that have environmental lighting. As in the stage,
there can be multiple lighting devices shown as 500, con-
trolled by the show control device 502 based on outputs

40

45

6

from the CPU 504. Of course, the CPU 504 can be the same
as the CPU 450. Speakers such as 506 can also be controlled
in an analogous way. In this embodiment, users can wear a
wearable device 510 such as a vest or necklace, and can also
include their controller such as 512. The wearable device
510 can interact with the different barriers that are produced
or located throughout the location. One such area was shown
is 520, and this may include an integrated touchscreen 522
as well as an RFID device 524. The RFID device can be used
to communicate with a corresponding RFID on either the
device 512 or on the wearable device 510. The beacon
device can also include integrated LED lighting which 526
which becomes part of the game. The beacon device 520 is
shown as being substantially triangular in cross-section.
There can also be other devices including the barrier device
530 which includes LED lighting 531, and other barrier
devices 540 which do not include LED lighting. The barrier
without LED lighting can be illuminated by a video projec-
tor 541.

Each of the barriers can include beam breakers shown as
533 which can track the location of the user.

Barriers can be internally illuminated, include a large
touchscreen or be without display technology and act as a
projection surface for ceiling mounted projectors. RFID
readers, beam-break technology and a sturdy connector that
allows physical props to connect to each barrier engage the
player in physical challenges. Physical props include items
such as balance beams, large button pads, scales, rope-
swings, and laser beam break supported by a fog machine.

The overall space includes a multi-channel audio system
to support the game play along with theatrical lighting. A
players tablet and device allow them to input information,
control interactions in the space, communicate, gather infor-
mation, and identify players to one another.

The dome is shown in FIG. 6, and can include a large
screen dome 600 in addition to or in place of the devices
previously discussed. This device can include bleacher seat-
ing 605 so that all users can see the contents of the dome.

The floor shown in FIG. 7 can be an interactive floor 700
allowing the location on the floor to be used as part of the
game.

In any and all of these embodiments, the user’s locations
can be tracked. when players visit the space, their position
and game performance is tracked. Players that visit the space
will, at a minimum, create a guest membership account to
track stats and display accomplishments during a single play
session. The full membership includes a profile that is
created on-site or online that includes tracking of all
achievements and actions, allowing for a fully customized
and simplified experience. All transactions are then linked to
the user’s account, allowed the player to streamline every-
thing from drink orders, to merchandise sales, to game
sessions, to micro-sales. The profile includes meta-data
about the player, a gaming handle, an avatar with customi-
zation capabilities, and all Meta data and game data.

All of these areas can allow users to interact with the
games and each other. Devices and Touchscreens can control
elements on the Big Screen through touch but also through
a unique identifier. One approach for control is through
tracking the unique identifier. The unique identifier can be a
QR type barcode or an IR emitter that is either on the back
of the device or on an attachment that connects to the device.
The unique identifier will be detected using cameras or other
sensing devices placed around the room. The device position
and angle is able to be accurately detected so that it can
control and interact with the main display screen in the area
(e.g. the big screen 470 and stage, or the big screen 600 in

US 9,566,510 B2

7

the dome or the scoreboard 702 in the floor). The different
rooms also include cameras or other kinds of movement
detectors. When cameras are used, they can be used to allow
for augmented reality moments in which the player sees
themselves on the screen.

Each of the areas also includes a multi-channel audio
system to support the game play along with theatrical
lighting.

Therefore, all of the different areas have different layouts,
but have a few things in common. All of these areas enable
users to interact with the games from different locations
within the layout. All of these have the ability to track the
user’s location in the layout, and to provide interaction with
the user that is specific to the user’s location. All of these
have some kind of display, and while the display is different
for the different locations, the display facilitates the user
interacting with the game. In addition to the display, how-
ever, there are also position controllable lights, and also
sound that is controllable by the game controller to different
locations.

The specific games can be optimized for use in different
specific locations. Two of the specific aims are described
herein. The first game is called “spotter”. This is a hidden
picture game with trivia and competition intended to be
played in the dome.

The story line is as follows:

Claim victory as an expert Spotter by placing hats onto
famous heads. Can you find a Super Bowl Champion? A
Hollywood Starlet? A famous monkey? Use your incredible
eye to catch the recognizable pop crew from yesterday and
today. Can you take the Top Spot?

The goal of the game is to place the most hats on the
recognizable characters.
Group Goal

The goal for each round is to have the most hats at the end
of the game in comparison with previous rounds and play
sessions (see Best Scene Ever).

Setup

The world screen shows the People.

The players each receive an iPod Touch that acts as their
Hat Deployer.

Description

Players start by logging into their iPod Touch, taking a
picture of themselves, choosing an avatar, and choosing a
hat. Their picture and hat instantly appear on the Scoreboard
on the large display. They each are automatically given an
assignment. Each assignment is simply a name or identifier
for a person to “hat” on the screen.

The iPod Touch screen turns into a touchpad and a
reticule/hat combination representing the player appears on
the large screen. In order to complete assignments, players
must move the avatar to particular “people” on the screen
and place a hat on that person’s head. The avatar is moved
using the accelerometer in the iPod Touch.

The game is made up of three timed rounds and the player
with the most hats at the end of the game wins.

Assignments

On the player’s iPod Touch are slots for three assignments
and an inventory. Assignments work on a branching struc-
ture—as players satisfy the requirements, new ones of a
greater difficulty appear. There are also fewer assignments
available as the players get to more difficult branches, which
means that sometimes players are competing with one
another to complete the same task (and be forced to stack
hats). Players do not need to finish the assignments in any
particular order and get a new one immediately upon fin-
ishing another one.

10

15

20

25

30

35

40

45

50

55

60

65

8

The Inventory

Ttems other than Hats, come in limited quantities. Each
player has an inventory, which can hold Apples, Eggs, Pies,
and Umbrellas. Some assignments reward the player with
one or more items, as indicated on the Assignment List.

An endless loop of people dropping onto the screen and
falling from the bottom. The people vary in size. At first in
a traditional “large in front, small in back” faux 3D per-
spective, but then more and more random distribution of
sizes.

People that have been “hatted” by a player will slowly
recede into the background, but always stay present on the
screen, unless an apple knocks off the hat. Assignment
targets also recede into the background over time to make
“hatting” them more difficult.

Hats Deployment

Each player has a hat deployer (iPod Touch) that they use
to control the reticule on the screen. This deployer also
shows the current assignments. Once a player puts the
reticule on a person they need to find, they hit a button and
the hat appears on that person. If a hat is already on a person,
new hats are stacked (called hat stacking).

Players begin the game by choosing which type of hat
they want to deploy and the type of reticule to control. Hats
are unique per each player.

Scoreboard

The scoreboard is on the large display and shows each one
of the player’s faces along with their chosen hat. The
scoreboard is ordered in real-time showing the player that
has the most hats on the screen. As players place more hats,
the scoreboard will reorder to show which player is in the
lead.

Apples

Apples have the ability to knock a hat (or hats if they are
stacked) off of a person on the screen. This affects the
number of people the target player has “hatted” and affects
their place on the scoreboard.

Pies

Pies come in a variety of flavors, which determine their
color and longevity on the screen. If a player throws a pie at
a person without a hat, that person cannot receive a hat until
the pie drips off completely. People wearing hats are unaf-
fected by pies.

Eggs obscure a large part of the screen—as if someone
threw an egg at the physical screen. The entire spread slowly
drips down and disappears after a set period of time. While
an egg is on the screen, players cannot see any of the people
behind the throw—which means that no hats can be placed
while the egg is still blocking the view. Eggs can be used
offensively or defensively.

Umbrellas can be placed above the head of a person on the
screen (whether they are wearing a hat or not) and prevent
anything bad from happening to them over a set period of
time—this means they will not be affected by apples, pies,
or eggs as long as the umbrella is present.

Shout Hints

Shout Hints allow a player to call out a specific name,
such as “John Wayne,” and have that person’s head get
larger on the screen, therefore making it easier to find. If
nothing happens to an enlarged head after a set period of
time (meaning that no one puts a hat on or throws an item
at it), the head (and person) floats off of the screen. Each
player starts with 2 Shout Hints at the beginning of the game.

Players can also get a hint by tapping on the assignment
on the iPod Touch. This will bring up a picture of the target’s
face.

US 9,566,510 B2

9

Hat Stacking

If a player has an assignment that already has a hat, they
may stack their hat on top of that person as well. This is a
risky move, however, because another player is more likely
to use apples on stacked hats.

Errors

Players will undoubtedly make mistakes throughout the
game and initiate a bad deployment. When this occurs, the
hat simply falls away and is not placed on the incorrect
target.

Rounds

There are three rounds of Spotter, varying in length
between one and two minutes. Each set of rounds is named
with a unique title (such as Cosmopolitan or Chieftain) and
the date. This makes it easier for players to remember which
games they participated in over time. At the end of each
round, a round winner is announced and at the end of the
game, the meta-goal Best Scene Ever is compared, before
the next game begins.

Difficulty

As the game progresses and players complete more
assignments, there are different ways that the difficulty
increases.

1. The assignments use more difficult identifiers. Instead
of having a person’s name (“Barack Obama”) it may have a
piece of trivia (“The 44th President”).

2. The speed in which new “people” that appear on the
screen and then recede increases. Also, the total number of
that particular target person on the large display decreases.
This means that there may be 10 Barack Obama’s in the first
round, but only three in the third round, making him harder
to find. Also, he gets smaller and farther “back” quicker than
in earlier rounds.

3. The number of items in the game increases. Later
assignments reward the players with more and more “grief-
ing” items.

Ending the Game

After three rounds of play, the player with the most
cumulative hats is “crowned” the winner and recognized on
the large display. The final Best Scene Ever comparison
moment occurs and the group’s total success is shared.

Best Scene Ever

Once the game has completed, a snapshot of the scene is
taken and compared to previous play sessions. The more
hats present, the better that the group has done on the whole.

Game Scenario Narrative

Shawn enters the space with his friend Karen to play
Spotter. Shawn’s a big gamer, but Karen is not.

They receive an IPOD TOUCH™ and see that the game
is called Spotter. The room is filled with about 20 other
players. The space is lit well and feels playful. The IPOD
TOUCH™ has instructions on how to continue.

They each take their picture and make selections as
indicated on the JPOD™. Shawn chooses to use a Fez hat
and the Wing reticule. Karen chooses a Sombrero hat and the
Finger reticule.

Each of their pictures appear on the screen as part of the
scoreboard. They are wearing the hats they chose.

A short introduction animation plays. They have to use the
iPod to control the reticule on the screen. The players will be
putting hats on celebrities to complete assignments—seems
pretty easy, like a multi-player “Where’s Waldo.”

While the introduction is playing, Shawn and Karen are
about to move their reticules around the screen. Shawn is a
natural and Karen gets the hang of it pretty quickly.

10

15

20

25

35

40

45

50

55

60

65

10

The introduction finishes and pictures of people start
appearing on the screen—some from the top, some from the
bottom. They are big, small-—sometimes even upside down.
The whole scene is immersive and whimsical.
Karen looks at her three assignments: “Barack Obama,”
“Bugs Bunny,” and “Frankenstein’s Monster.” She sees that
her reticule is pretty close to John Lennon—so she hones in
on him and puts the Sombrero on his head. There’s a lighting
flare, her iPod vibrates, and she gets points on the screen.
The whole sequence is very exciting! A new assignment
appears and she continues to play.
Later in the game, Shawn is behind and begins to fran-
tically finish assignments, sometimes stacking hats onto
people with hats already there. In a short period of time, he
hats Michael Jordan, Michael Phelps, Shawn Johnson, Usain
Bolt, and Muhammad Ali.
Karen gets frustrated trying to find John Wayne. She’s
been holding onto that assignment since the beginning of the
round. She uses a Shout Hint and shouts his name. His head
gets really big, but before she can put a hat on it, someone
throws a pie at his face, blocking her!
Shawn wins the first round and Karen comes in second in
the second round. Karen would have won, but someone used
an apple to knock off a stack of hats that included her
sombrero!
The timer appears during the third round and in the final
moment, Shawn is able to place a hat to complete a very
difficult assignment and take the lead. Karen gets eighth
place, which isn’t that bad considering it was her first time.
The entire group’s effort is compared to other play ses-
sions and it turns out that they placed more hats than any
other group. The entire audience cheers.
The outro animation happens and players return the iPods
while the space transitions to an intermission moment.
Moment-By-Moment Player Description
Player enters the World
Player sees the big screen displaying ambient imagery and
animation
Player receives an iPod Touch
Player receives instructions on how to continue via the iPod
Player takes her/his picture
Player selects a hat
Scoreboard is populated with player’s face and hat
Player selects a reticule
Player uses the iPod to control the reticule on the screen
Player is instructed to wait until all players have joined the
game

A short introduction animation plays when all players have
joined

The screen is populated with “people”

Player receives a one assignment (eventually getting three)

Round 1 begins

Player looks for the right faces

Player finds a face

Player directs the reticule to the face

Player deploys a hat to the face—it is the correct face

A positive environmental sound is triggered

A lighting flare emits in the World

Player’s iPod vibrates

Player looks for faces

Player finds a face

Player directs reticule to the face

Player deploys hat to the face—it is the incorrect face

A negative environmental sound is triggered

Player’s iPod vibrates

Player finishes first two rounds

US 9,566,510 B2

11

A timer appears on screen in the final moment

Player wins or loses

Player sees scoreboard appear on screen

Scoreboard includes individual scores and the group score
The group’s success is compared with previous sessions
The outro animation begins

The intermission moment begins

The next game is a Time Based Flow called Spotter.

Pre-Game

1. iPod Touches™ are placed face up on a table with the
Spotter app pre-loaded. The face of each player is on a
screen or, in the case of a player with a missing picture, a
silhouette.

2. The players each pick up the iPod that displays her or
his face. Before a single player hits “Ready,” the large
display is a closed curtain with the Spotter Logo on it.

3. The players move out onto the floor in front of the large
display and hit “ready.” When a player hits “ready,” their
face or silhouette (if no face available) appear on the
scoreboard. Then their hat reticle appears at the middle of
the screen and sweeps up to the player’s score “icon.” They
are able to move the reticle around the screen and place a hat
on any of the three characters on the screen while waiting for
the other players. They are also able to “stack hats” and
throw apples to clear away the hats on a character’s head. If
the hat stack gets too high, it is automatically cleared.

On the first “Ready” click, the curtain pulls back to reveal
3 characters that can receive hats.

There is text and imagery on the screen that says, “Prac-
tice putting hats onto character’s heads and using apples to
knock the hats off. You can also stack hats—give it a try!”

Countdown

4. When the final player hits “ready,” a 20 second count-
down appears (this may be adjusted). The countdown gives
the last player a chance to move around the screen and get
acquainted with the system before the game begins. Each
player is given her or his first assignment—a single name
that becomes active when the countdown ends.

After the final player hits “Ready,” a 20-second count-
down begins.

After 15 seconds, the curtain closes and displays this text,
“Check your assignments now and good luck!”

5. During the last 5 seconds of the countdown (to be
finalized in testing), the curtain starts opening slowly. Dur-
ing this time, players cannot place hats until the timer has
completed. The screen is slightly dimmed with the reticles at
full brightness so players do not lose their spot. A sound and
lighting flourish trigger the beginning of the game.

When the final five seconds are done, the curtain pulls
back and the game begins.

Round 1

6. The first round lasts two minutes (to be finalized in
testing). Players start with a single assignment. When they
have completed the assignment, two more appear. When
they have completed one more assignment (the second
assignment since the beginning of the game), two more
assignments appear. Once they have three total assignments,
players will have three assignments for the rest of the game.
If a player does not “unlock™ a second or third assignment
slot during the first round, they will have to “unlock” them
in a subsequent round.

The bottom LED acts like a ticker with information about
what is happening on the screen. The information is all
character-based.

Information is triggered whenever a character is hatted,
hit by an apple or hit by a pie.

10

15

20

25

30

35

40

45

50

55

60

65

12

Text for being hatted, “[Character Name]| is now wearing a
[hat name]!”

Text for being apple'd, “The [hat name| (and [hat
name] . .. If stacked) was totally knocked off of [character
name]| using an apple!”

Text for being pied, “[Character name]’s face is covered in
pie!”

7. The first round only has Hats and Apples as available
options to the player. Each player has unlimited Hats and
begins with a single Apple. As the round progresses, Apples
are rewarded every so often for successfully completed
assignments.

8. The scoreboard updates in real time as players place
hats successfully or the hats are knocked off.

Round 1 Countdown

9. Round 1 ends with a 10 second (to be finalized in
testing) countdown. A rush of wind blows across the physi-
cal space and the virtual space, clearing all of the non-hatted
characters (or all of the characters if this is not possible).

Each round ends with a 10 second, on-screen countdown.

The first round ends with a huge gust a wind moving
across the screen.

Each round end concludes with the curtain closing.

First Intermission

10. The large display then shows a 20 second countdown
(this may be adjusted) until Round 2 begins. The screen
shows new instructional text about what is happening in
Round 2, specifically that there will be more characters,
character transitions are faster, and Apples are active. In
addition to the instructional text, the top 3 players are
highlighted in the center of the large display. Halfway
through the countdown, players receive brand new assign-
ments.

The top 3 players are shown on the screen, starting with
#3, then revealing #2, and #1.

The first intermission displays this text on the screen,
“Characters appear and disappear faster—and watch out for
apples!”

11. During the last 5 seconds of the countdown (to be
finalized in testing), the curtain slowly opens. During this
time, players cannot place hats until the timer has com-
pleted. A sound and lighting flourish trigger the beginning of
Round 2.

Round 2

12. Round 2 is 1 minute and 30 seconds long (to be
finalized in testing). The round has a higher frequency and
variety of “surprises” that move across the top section of the
large display.

Round 2 Countdown

13. Round 2 ends with a 10 second (to be finalized in
testing) countdown. An earthquake clears all of the non-
hatted characters (or all of the characters if this is not
possible).

Each round ends with a 10 second, on-screen countdown.

The second round ends with Godzilla crossing the screen.

Each round end concludes with the curtain closing.

Second Intermission

14. The large display then shows a 20 second countdown
(this may be adjusted) until Round 3 (the final round) begins.
The screen shows new instructional text about what is
happening in Round 3, specifically that there will be more
characters, character transitions are even faster, and Pies and
Eggs are active. In addition to the instructional text, the top
3 players are highlighted in the center of the large display.
Halfway through the countdown, players receive brand new
assignments.

US 9,566,510 B2

13

The top 3 players are shown on the screen, starting with
#3, then revealing #2, and #1.

The second intermission displays this text, “Pies knock
the hat off of a player’s head and Eggs splatter all over the
screen!”

15. During the last 5 seconds of the countdown (to be
finalized in testing), the curtain slowly opens. During this
time, players cannot place hats until the timer has com-
pleted. A sound and lighting flourish trigger the beginning of
Round 3.

Round 3

16. Round 3 is 1 minute and 15 seconds long (to be
finalized in testing). The round introduces eggs and pies (and
does not have apples), the highest frequency and variety of
“surprises” that move across the top section of the large
display, and the most density and transition speed of char-
acters.

Round 3 Countdown

17. Round 3 ends with a 10 second countdown.

Each round ends with a 10 second, on-screen countdown.

The third, and final, round ends with an eruption, which
just displays smoke coming up from the bottom of the
display and fog filling the space.

Each round end concludes with the curtain closing.

End of Game

18. Fog fills the space and moves across the screen. The
final score is revealed on the large display, particularly
highlighting the top 3 hatters. In addition, the group’s score
is compared to all other play sessions and ranked.

Between Game Intermission

1. The large display transitions from the end state of the
game to a looping video that gives the atmosphere of a social
club. The lighting and sound transition to allow for social
activities, such as dancing, talking and drinking. The players
return their iPods to the facilitators so they can be loaded
with the next game. A countdown until the next game
appears on the screen (roughly 2-3 minutes).

The SnB game is described as follows:

This can be played in the “World” part of the ESC.

Story Pitch

Beneath a haze of chaos lies a secret prize—two teams
battle to uncover the mystery and conquer the World by
using sophisticated vacuum technology. Only one group will
dominate and be the ultimate suckers!

Goal

To score the most points for your team before the reveal.

Setup

The World Screen shows a moving particle system with
other objects along with a grid of Turrets.

The Floor indicates different “spaces” to stand to control
the Turrets.

The Players receive an iPod Touch that controls the
Nozzle on the Turret.

Players start by splitting into two teams and choosing a
position on the floor in front of the large screen. Each of the
spaces on the floor corresponds to a turret on the screen.
Players register their spot to control the particular turret and
assign that turret to their team.

The screen displays a large particle array with two main
types of objects floating across the entire space: (1) particles
and (2) hazards. The iPod Touches display a switch that
allows the players to change from suck to blow, as well as
a variable slider for controlling the concentration of the
“power”—whether it’s a narrow and strong beam or a
weaker, but spread out beam.

The goal of the game is to gain the most points before the
hidden object is completely uncovered. Particles score a

10

15

20

25

30

35

40

45

50

55

60

65

14

minimal amount of points, bonus objects score significantly
more and hazards take away points, as well as some other
annoyances.

Turrets

Each player controls a turret, which is in a fixed position
on the screen. The turret configurations may vary depending
on round (TBD). Turrets cannot move. Each turret has a
single “nozzle” that the players control.

Nozzles

Nozzles are attached to turrets and can move 360°. The
nozzle can vary in suck/blow strength by changing the
width—a wider nozzle allows larger objects to be sucked in
and distributes the power to a larger swath, but also is
weaker; a narrow nozzle allows smaller objects to be sucked,
but concentrates the strength as a strong beam.

Teams

There are two teams that play SnB: Red versus Blue. Each
team gets to choose which turret they want to control at the
beginning of the game. Beginners will have a more random
distribution, while those that have played a couple of rounds
will seek out specific spots for them and their teammates.
Teams need to work together to bring in the most points—by
grabbing larger particles together and repelling larger haz-
ards together.

The more points that an individual player accumulates,
the greater the power their nozzle has. Essentially, the more
players “suck,” the more they can “suck™ (and blow).

All objects on the screen, except for the turrets, “float” as
if in a shallow pool of water. The larger objects have a
weight to them that makes them more difficult to move.
Some particles (in later rounds) have interesting shapes,
such as rods, which can spin through the space and have
varying levels of resistance depending on the angle of the
pull or push.

Any particle, depending on size, can get stuck in a nozzle.
The player must either blow that object away (if it is too
large) or can adjust the size of the nozzle to accommodate
the larger mass.

Give the player points based on the size of the particle.
Larger particles=more points. It can be odd shapes in later
rounds. The system takes away points based on size. Larger
particles=more points taken away.

There are also a number of hazards. Point Loss—Lose
300 points if swallowed. Power Decrease—Temporarily
lose power. Nozzle Blocker—Temporarily lose the ability to
swallow. Confuser—Temporarily have controls reversed.
Blinders—Temporarily be covered

The most plentiful object on the screen is particles of
varying sizes that float around and can be sucked or blown
by the nozzles. Particles have a point value based on
size—the larger the particle, the higher the value. Particles
are either positive (meaning they reward the player with
points) or negative (meaning they take away points). The
more points a player has, the stronger their nozzle.

Game Scenario Narrative

Nancy enters the ESC World space and receives an iPod
Touch. She’s never played a game like this before, so she’s
a bit nervous.

The game is called SnB. She is given the option of
choosing one of two teams or just selecting “Place me on a
team.” She is put on the Blue team.

The iPod then asks her to select a Turret position. She
really doesn’t know how that will affect the outcome of the
game, so she selects “Pick one for me” and follows the
instructions. She has to go stand on a space on the floor
indicated by a bright spotlight.

US 9,566,510 B2

15

Once in her spot, Nancy is able to move the turret around
on the large screen. That part is really easy. There are other
controls on the iPod, but she knows she has the basics down.
The space is very large with a couple dozen other players
finding their spots.

The game starts with an intro animation and the instruc-
tions, which seem pretty each. Use the iPod to control a
turret. Use the turret to suck up positive particles (that are
blue) and blow away negative particles (that are red). The
larger the particle, the more points you gain or lose. There
are also hazards, which look different, so it’s best to avoid
those altogether.

Nancy understands the basic idea. She wants her team to
win, so she’s very into avoiding the bad stuff. The game
starts with very few hazards or negative particles, which
makes it pretty easy. Nancy learns that by adjusting the
nozzle size, she can change the width and power of the
vacuum. This gives her a lot of control over her success. She
can even feel the particles being sucked into her device.

The particles start getting larger and heavier, which makes
the game much more difficult. Nancy starts shouting to her
teammates to work together. If she uses her nozzle to blow
good particles toward other blue turrets, the team will win.

Nancy accidentally sucks up a Confuser Hazard. For a
short period of time, all of her controls are completely
reversed, which makes the game very difficult and frustrat-
ing.

Just as Nancy regains complete control of her turret, a
Weather Hazard starts to affect the entire system. Particles
start moving in waves across the screen, making them harder
to predict and capture.

An image begins to appear behind the particles and the
final countdown begins. The Blue team pulls a last minute
win because they manage to capture a lot of high-scoring
large particles by working together.

A figure appears from behind the screen, revealing a photo
of a guy’s umbrella being pulled away by a large gust of
wind. The group cheers and is anxious to play again.

Time Based Flow: SnB (Demo Edition)
Pre-Game

1. 1Pod Touches are placed face up on a table with the SnB
app pre-loaded. The “Turret Map” symbols are reflected
onto the floor using gobos. The large display shows the SnB
logo.

2. The players pick up an IPOD™ and walk to the
corresponding spot on the floor. When they are in the correct
space, they hit “ready” on the IPOD™ screen.

3. Once the final player hits “ready,” the large display
zooms into the globe at the center of the logo and all of the
turrets appear on the display. The players are able to move
their turret on the large display. There are no particles
present during this period, so the player simply learns how
to spin the turret and has an opportunity to strategize with
other team members. Additionally, instructional text and a
20 second countdown are at the center of the large display.
During the last 5 seconds of the countdown, each team is
individually highlighted using lighting effects.

The instructional text at the center of the large display is,
“Tilt your controller to move your turret. The team with the
highest score wins the game—each particle type is described
on your iPod!”

10

15

20

25

30

35

40

45

50

55

60

65

16

The instructional text disappears when the particles begin
to fill the large display.

Stage 1

4. On completion of the countdown, particles begin
appearing on the large display and Stage 1 is triggered.
There are 4 “stages” to the game that go back to back
without interruption.

5. Stage 1 consists entirely of positive particles. The
players can adjust the strength of their suction power and use
a blow “pulse” as needed (although it will not be necessary
during Stage 1). As the players suck up positive particles, the
LED below the large display shows the team score as a “tug
of war” style color band. The turrets also display each
player’s score as the game progresses.

Stage 2

6. Stage 2 begins roughly 1 minute after the beginning of
the game. The lighting and sound in the space shift to signal
a mood change and negative particles are introduced.

Stage 3

7. Stage 3 begins a minute after the beginning of Stage 2.
Hazards are slowly introduced into the system in the fol-
lowing order: Point Loss, Power Decrease, and Nozzle
Block (push only). Each hazard looks different and is
explained in the center column on the iPod. The lighting and
sound in the space shift to signal a mood change.

Stage 4

8. Stage 4, the final stage, begins a minute after the
beginning of Stage 3. This stage has two parts. The first part
of Stage 4 introduces global hazards such as wind. 30
seconds into Stage 4 triggers the finale, wherein no new
particles are introduced into the system. Each change is
signalled using a lighting and sound shitt.

Additional aspects are described herein.

In one embodiment, the games are “hosted” by a host
machine that communicates with the different features
which form parts of the game. These different features
include all the parts described above, and those described
herein including the mobile controller connections. In one
embodiment, this is formed by a Mac Pro™ computer with
the following technical specifications, with 3.5 GHz 6core;
12 MB of L3 cache; 16 GB (4x4 GB) of 1866 MHz
DDR3ECC; 1 TB PClebased flash storage; * Dual AMD™
FirePro D700 GPUs with 6 GB of GDDR5 VRAM each.
This host machine runs all the software necessary for the
Unity 3D games to support 30+ simultaneous mobile con-
troller connections with low latency and high bandwidth
communication.

The system supports a sustained throughput of at least 900
kbps of message data and a sustained message processing
throughput of 1200 messages per second without having a
major impact on CPU load. That means that additional
processing power is dedicated to the Unity3D game logic
even when the messages are being processed as described
herein.

The host system is configured using a game development
kit, described herein. The game development kit operates by
simulating the multiple controllers to which the system
communicates. These simulations use iOS™ portable
devices with 1OS™ installed, e.g., an iPod touch™ or
iPhone™.

The host system launches games using a game launcher
which acts as a host application for the currently running
game. The host system handles various functions for the
game including drawing content even when a game is not
running and it also starts and stops games in response to
controls from a game administrator.

US 9,566,510 B2

17

The game administrator or “docent”, has control over the
game playback. That control is carried out from the portable
device that is configured or enabled to be the docent. The
docent controller can therefore be one of the portable clients.
This client can control when games begin and can choose the
next game to execute. In one embodiment, however, the
games execute automatically.

The game launcher identifies games installed on the
computer using a product name unique identifier. When the
game launcher receives a message from the docent applica-
tion, it performs its own housekeeping and then transmits the
necessary information to the currently running game, or to
a new game, if the transmit is after the game has been
started. However, starting up a game program is distinct
from starting the game (with the first round) once all the
controllers are connected. Note: the docent controller never
interacts with the regular controller applications in an
embodiment.

When a game is over, the Slideshow Interstitial launches
a slideshow, using the LauncherSlideshow class is used in
conjunction with the LauncherConnection class to display a
slideshow of full screen images and movies in between
games. The LauncherSlideshow can be used to display
advertisements and other marketing assets. This Launcher-
Slideshow class uses images and videos that are stored in the
local machine located in the EscLauncher/Slideshow folder.
The class defaults to rotate through the images/movies every
10 seconds in alphanumeric order. These default settings can
be changed, e.g., using the SlideshowLauncher::SetBack-
groundImageRefreshTime() method to set a rotation time or
other parameters.

The game launcher serves as an intermediate screen in
between games. The EscDocent controller launches games
on command during the playing of this content. If a game is
launched while a movie is playing, the movie sound fades
away and the movie is stopped.

After the game ends, the launcher starts showing the next
item on the queue.

The docent, the “EscDocent” is a native iOS app that
operates to launch/quit games from the EscLauncher. When
the docent app is first launched, it will show if it is connected
to the server, e.g., via an indication of Connected/Not
Connected. If connected to the ESC game server, the docent
can launch and control the games.

The EscDocent app contains two views: the main view
and a detailed view. The main view shows a list of all the
games that are currently available on the local system
located in the folder ~/escgames. The detailed view allows
the docent to start/stop a game and to apply custom settings.

The main view shows a table list of available games.
These available games can be selected by tapping on them,
which will show a prompt to load the game. If OK is
selected, the app loads the game. The detailed view shows
a spinning loading indicator until it receives a game loaded
message from the game. This happens once a game has
loaded and is connected to the server. The detailed view
contains both the Settings and Advanced Settings. Settings
provide basic functionality such as starting and stopping a
game, while Advanced Settings allow more customization of
a game.

Settings comes with a number of basic options to select
the Round and Difficulty.

Round: 1, 2, 3,4, 5

Difficulty: Easiest, Easy, Medium, Hard, Hardest
START: Start the game.

PAUSE: Pause the game

STOP: Stop the game (ie stop the current round)

20

25

30

40

45

55

60

65

18
NEXT: Go to the next screen. (ie skip the instructions)
QUIT: Quit the game

Once options are set, START is selected to start the game.
This will tell the game the options that were selected. Once
the game is started, the docent can also select PAUSE or
STOP.

At any point in a game, any number of NEXT messages
can be sent. The game developer can use this message to do
a number of things like skip instructions or to send in a
special enemy or character into the game.

The game can also be QUIT the game at any time and
returned to the normal view with a game selection.

Prior to a game starting, the administrator can select the
round and difficulty. Once the START button is pressed,
these options will be inactive until the administrator STOPs
the game.

After scrolling down from the Settings view, there is an
Advanced Settings view to select a number of customizable
parameters to apply to the game.

Advanced Settings comes with two sets of options: Mode
and Parameter. If the game is set up to handle these extra
options, then the administrator can use the Docent Control-
ler to set these advanced settings. It is up to the game
developer to decide how the mode/parameter values apply to
the game.

In one embodiment, there are 3 modes and each mode
allows you to select from 3 button choices. The mode values
range from 0-2. There may also be 3 parameters with text
fields that allow entry of custom strings.

If a game developer chooses to set default advanced
settings parameters, the docent parameter text fields are
preloaded with the custom text from the game.

A game developer may also set up default parameter
strings that the Docent controller displays by using the
method SubmitParameterStrings() from Server Connection.
The controller may set up to 3 parameter strings. At any
point in the game, the user can select APPLY to send the
advanced settings to the game engine.

When games are updated on the local game engine server
(880 in FIG. 8), the game launcher (1210 in FIG. 12) sends
a message to the docent controller (1200 in FIG. 12) to
update the list of available games in the main view. The
EscDocent gets the new list of games when it is connected
to the game server and is active.

The EscShowControllnterface abstracts messages that are
used to customize live lighting effects during gameplay.
Lighting effects are based on the number of teams in play
and variables such as color, duration and pattern can be
customized.

Lighting controls can be set using a show control inter-

face:

Lighting color for teams

Lighting accents

Lighting wash

A highlight for an individual player

Ambient lighting

Fans

Strobes

Atmosphere

Preprogrammed Lighting events

System setup

The EscAnalytics class is a singleton that is the primary
interface for tracking gameplay and player activity utilizing
Google Analytics 811 (GA). EscAnalytics allows the game
developer to track game activity through events. It also
allows the game developer to track player activity like

US 9,566,510 B2

19

player points awarded or the winning player as well. How-
ever any events can be tracked as desired.

The system also supports integration with Google Ana-
Iytics. In Google Analytics (“GA”), all tracking is performed
in the game logic which means that it is invoked through the
Mac Pro gaming system. Each time a game is launched, a
new session is started. During a session, a game developer
can invoke tracking calls that result in GA events being
tracked.

All GA events have a Category, Action, and Label. The
Category is always the location of the Mac Pro unit. The
Action is the name of the game and the event that is being
tracked. The Label is the number of players currently
experiencing the event. Each one of these metrics can be
searched, sorted, or filtered. A timestamp is automatically
recorded with the event; so the event can be seen in real time
or viewed after the fact across any time period, at multiple
scales (days, weeks, months).

In one embodiment, the functions and processes can be
monitored using Google analytics. For example, this can tell
the user how much processing power has been used, how
many times a game has been played, and other information
about the game.

In order to be sure that games can be remotely deployed
to the system, a game management system is used. The
Game Management is carried out using a Game deployment
system that uses an AWS S3 bucket 812, logic that runs on
theMac Pro gaming machines 880, and a controller app
deployment using Meraki.

Remote Game Deployment is carried out by using new
and updated games that are zipped and uploaded to the S3
bucket 812 in Amazon Web Services; however of course
other comparable buckets of this type can be used. Creden-
tials are provided to log in to the AWS Console and upload
the games. Each game is uniquely named when it is com-
piled into OSX app (for example, escduckhunt.app). After-
wards, the new or updated game is archived as a .zip file with
an underscore and eight digit date (as MMDDYYYY)
appended to the file name, for example,
escduckhunt_06152014.zip. Zip files are named in this way
for the sync script to function as expected. Only one copy of
each game should exist in the S3 bucket at any given time.
Once in the bucket 812, the games are synchronized down
to the individual machines.

Syncing is performed automatically via a script which
runs nightly at 4 AM EST provided the game server has a
working connection to the Internet and the escuser is logged
in. Any files that have not been downloaded to the game
server are downloaded in addition to any files that have
changed since the last sync. Any newly downloaded files
will be unzipped and replace existing games on the
gameserver. Any games that do not exist in S3 are deleted
from the game server’s game directory.

One embodiment of the system described above uses the
hardware system described and shown in FIG. 8 along with
the software system shown and described with reference to
FIG. 9. In this system, the local network 800 may be the
device that is playing the game. This connects via network
805 to Internet repositories 810 which can include, as
described above Google analytics 811 and the S3 bucket
812. This also connects via local network 815 to wireless
network structures shown generically as 820 and 825 which
may include the game management. The configuration is
received from the Internet 830.

The local network itself includes the unity game engine
850 shown in further detail as 851 which includes the game
UT and event management, as well as the run time bridge and

10

15

20

25

30

35

40

45

50

55

60

65

20

communication middleware. The game engine connects to
the wireless, connects to a game engine service 880, con-
nects to projectors 855 that produce the output, and also
projects to a supernode 860 which controls the lighting
system 861. This also connects to the audio system 862 via
MIDI.

In FIG. 9, the main system 900 is shown connected to a
single remote system 910 here an iPod touch™. However, it
should be understood that many different remote systems
can be connected to the single main system 900. As
described above, the main system 900 includes the game
launcher 920, connected to the game itself 921 as a compiled
game. This may be connected via XMPP. In addition, each
of these are controlled by the control structures, a media
sync script 925, game sync script, game registration script,
keep alive shell, as well as locations of the credentials keys
and analytics.

The local routing system can use DNS and bonjour. The
messaging architecture can use ejabberd/ XMPP.

Using this system, The ESC gaming platform supports
between 30 and 50 gamers playing together on a single
canvas using commodity mobile devices and computing
hardware.

The Communication Subsystem is an abstraction layer
that uses both TCP and UDP as an abstraction layer that sits
between the iOS devices and the Mac Pro that runs the
games. It mediates all communication using both TCP and
UDP protocols. TCP socket connections provide reliable and
robust message transmission that will arrive in the same
order that it was sent. TCP communication is ideal for data
transfer that must be guaranteed. The downside to using
TCP sockets is that they can demonstrate higher latency than
UDP communication. Conversely, UDP communication is
connectionless and thus may be less reliable. This is espe-
cially true when experiencing signal interference and noise
which is more common on wireless networks. UDP mes-
saging delivers messages with lower latency.

The ESC event synchronization provides high throughput
performance and low latency by utilizing each protocol for
what it is best suited for. The game developer selects the
right method of communication. This is done by selecting to
send events or states.

An event provides communication that is guaranteed to be
received and in the order that the events were dispatched.

A state is a list of variables that can be defined and
changed at any time but are transmitted asynchronously and
only when needed.

All TCPbased communication that happens between the
mobile devices and the desktop is established using
EscEvent instances. Every EscEvent is composed of a name
and a list of keyvalues pairs. Both of these properties are
public on EscEvent instances. An EscEvent is serialized to
a string literal with the format, “name:keyl=value2,
key2=value2 key3=value3”.

All UDPbased communication that happens between the
mobile devices and the desktop is established using a state
variable dictionary. Each Client instance stores a state dic-
tionary that it transmits to the game automatically. This is
done using the ClientSetStateVar method. This state infor-
mation is transmitted during the next Unity update step.
However, a game developer can override this update fre-
quency using the ClientConnection SetStateUpdateFre-
quency method. This method takes an integer that represents
how many times per second the state updates are synchro-
nized. This frequency cannot be set to less than once per
second.

US 9,566,510 B2

21

Choosing Between State Updates and Game Events is
necessary to efficiently send data between controllers and
the game. This requires some consideration from the game
developer. When implementing communication game logic,
a simple way to choose between events and state updates is
to consider the following question, “is it okay if this infor-
mation is never received?” If so, use state updates. Other-
wise use EscEvents. An example of data that can be dropped
without great consequence is the i0OS accelerometer data.
The accelerometer data is changing constantly and if a state
update is lost then the game will simply receive the next one
without anyone noticing. However, a message to start the
game cannot be lost in this way because if it was then a
controller would not be notified that the game had begun.

The gameplay format is carried out by each game as
follows:

1. Players hold a controller and wait to join the game

2. The controller connects to the game and notifies the player
3. The game waits for acknowledgement from the player
4. Using the controller, the player indicates they are ready
and join the game

The game waits for remaining players to join

The game starts

. The first round starts

. The first round ends

. The Nth round starts

10. The Nth round ends

11. The game ends

Each one of the above stages is initiated via an EscEvent.

Notifications for these stages are exposed to game devel-
opers as callbacks. Each callback allows the game developer
to a chance to change the state and appearance of the game
as needed.

Creating a Controller Application is carried out to get a
Controller Connected to the Game. The ClientConnection
interfaces with the game. The ClientConnection class acts as
an abstraction layer for the networking interface. This is
done when the controller and the game are connected to the
same network.

The game operates by sending initialization information
to the controller. This information can include team infor-
mation, voting information, or simply an opportunity for the
user to indicate that they are ready to join the game. This
event should normally be the first one received by the client
and named “init” and include any special parameters
required for the game. These parameters are defined by the
game developer and thus they are optional.

Sending this EscEvent from the Controller application is
required for the game to function properly. After processing
the init event, the client must respond to the game after a
user has provided feedback for the init event. The response
event name must also be “init” and be sent directly to the
game using the DispatchEventToClient method. The follow-
ing is a simple example:

//sending a message to the game server

ClientConnection connection=ClientConnection.Instance;

connection.DispatchEventToClient(new EscEvent(“init”),
connection.server);

Each EscEvent that is sent to the server can include an
optional list of keyvalue pairs. The following is an example
for this functionality:

//Sending an event from the client to the game
ClientConnection connection=ClientConnection.Instance;
Dictionary<string, string>properties=new

Dictionary<string, string>();
properties. Add(*key”, “value™);
//create special EscEvent

NN IS e NN

10

15

20

25

30

35

40

45

50

55

60

65

22

EscEvent specialEvent=new EscEvent(*special”, proper-

ties);
//Send the event the game
connection.DispatchEventToClient(initEvent,

.server);
Processing Events from the Game

As the game runs, the game will periodically send new
information to the controller. Events with the following
names are sent for all games:

gameStart

roundStart

roundEnd

gameEnd

However, it is up to the game designers to create any
special events they need which will be handled by the
controller that goes with the game. All of these events should
be processed in the MonoBehavior Update method. All
events come from the game which stores the events until
they are processed by the controller application. The fol-
lowing is an example of how this would normally be done:

connection-

// processing messages from the game

ClientConnection connection = ClientConnection.Instance;
if (connection.IsConnected()) {

if (connection.server.HasMoreEvents()) {

EscEvent evt = connection.server.GetNextEvent();

if (evt.name == “some special string”) {
// do something with event . . .

}

}

¥

Available Callbacks for Clientconnection include the fol-
lowing:

OnConnected—invoked when it has established a con-

nection with the game

OnRegistered—invoked when it has registered itself with

the game

Onlnitialized—invoked when it has received the init event

from the game

OnDisconnected—invoked if something causes the client

to disconnect from the game

OnHandlePresence—invoked when the game is detected

Creating a Game Application is carried out as follows.
Creating a new game requires using the ServerConnection to
interface with the controllers. The ServerConnection class
acts as an abstraction layer for the networking interface. A
server interface is created for the game. Its best to call this
in the MonoBehavior Awake method invoked by the Unity
runtime.

After starting the game, the ServerConnection IsCon-
nected method is used to determine if the connection has
been successfully opened. There is also the OnConnected
callback that the instance invokes when the connection is
made. It is invoked once IsConnected will return true.

A connected controller waits for a special “init” event.
This event is designed to provide an opportunity for the
game designer to submit special game info to the controllers
that attempt to join it. This data can be anything stored as a
list of keyvalue pairs. The following is an example of such
an operation:

//initialize a controller that has just been registered
ServerConnection connection=ServerConnection.Instance;
Dictionary<string, string>initPayload=new

Dictionary<string, string>();
initPayload. Add(“team1”, “defensive”);
initPayload. Add(“team2”, “offensive”);

US 9,566,510 B2

23

//upon registration send init event
serverConnection.InitializeController(client, initPayload);

The game starts by sending one of these initialization
events; and after the game is running, the controllers submits
events to the game. These events get stored in each client
object within the ServerConnection.clients list until they are
processed by the game. The system checks for state changes
that the clients have submitted. The Client.GetStateVar
method is to read the latest state information. Consider the
following example code:

// processing messages from controllers

ServerConnection connection = ServerConnection.Instance;
if (connection.IsConnected()) {

foreach (Client client in connection.clients) {

while (client.HasMoreEvents()) {

EscEvent evt = client.GetNextEvent();

if (evt.name == “some special event name”) {
// do something with event . . .

}

}

// collect controller state information

object stateUpdate = client.GetStateVar(“somestatevariable™);
}

¥

Note that state value changes and events are independent
of one another. A client might have no more events to
process and still have state changes that can be processed.

To send events to the client, a process ServerConnection-
.DispatchEventToClient is used to supply the EscEvent and
the Client instance that will receive and process the event.

The following is a list of all the callback actions that the
ServerConnection class provides:

OnConnected—invoked when the game has opened the

connection

OnClientConnected—invoked when a new client has con-

nected to the game

OnClientRegistered—invoked when a new client is reg-

istered with the game

OnClientDisconnected—invoked when a client has dis-

connected from the game

OnClientlnitialized—invoked when a client has become

initialized with the game

OnGameStart—invoked when the game launcher starts

the game

OnGamePause—invoked when the game launcher pauses
the game

OnGameEnd—invoked when the game launcher ends the
game

OnParametersUpdated—invoked when the game receives
updated parameters from a docent remote control
OnNextScreen—invoked when the game receives a
“next” button press
Games are preferably team games, e.g., the players are
broken up into teams. The creation of teams has a major
impact on how the onsite lighting and effects are controlled.
There are distinct options for creating team games including
One team (every person for themselves), or 26 competitive
teams, or other options discussed herein. The lighting sys-
tem interfaces with the teams. However, the lighting system
only needs to be controlled based on which players belong
to each team. This information is needed in order to high-
light the lead or other player. The initiation process for all
team games should follow these steps:
1. Determine the number of teams
2. Gather or assign the player’s position and associate that
number with that client

10

15

20

25

30

35

40

45

50

55

60

65

24

3. Invoke lighting commands using the associated player
number.

Each person entering the room will either be given or choose
a spot in front of the screen. Each spot is indicated by a
number on the floor. One such layout is shown in FIG. 10
which shows the player layout locations 1 through 30. Each
player is assigned with one of those locations, either by
pre-assignment, or by the player standing in that location.
The game itself can either tell the player where to stand or
ask the player (by a message to their controller) which spot
they are standing on. This number then forms an index that
must be used by the game to group that player into the right
team and to highlight them in the future. The team that the
player is on is based upon their position and the total number
of'teams. FIG. 11 shows different team layouts which can be
accommodated when the system is telling the users where to
stand. For example, 1100 shows a team layout for use with
a game with 6 teams, 1105 with 5 teams 1110 for 4 teams,
1115 for 3 teams, 1120 for 2 teams, and 1125, for games
without teams. Each of these layouts includes the locations
1-30. Of course, other layouts can be used, but these are
exemplary.

The EscShowControllnterface abstracts messages that are
used to customize live lighting effects during gameplay to
interface and communicate with the lights to sending indi-
vidual lighting effects to the areas. Lighting effects are based
on the number of teams in play and variables such as color,
duration and pattern can be customized.

Once an instance of the Esc Show Control Interface is
created, calls to unity are made to customize the available
lighting control methods at defined moments.

Calls to Unity can use the following format
/1! Set total available teams, must be <=6
SelectTeamLightingMode (uint teamValue)

//! Highlight individual player for a given duration

HighlightPlayer (uint player, Duration duration)

/It Specify lighting color and duration for a specific team

SetLightingForTeam (uint team, LightingColor color, uint
timing)

/' Specify lighting accent color and duration

SetLightingAccents (LightingColor color, Timing timing)

/' Specify lighting wash

SetLightingWash (LightingColor color, Timing timing)

/' Specify lighting wash pulse

SetLightingPulse (Pulse pulse)

/1! Specify lighting ambient color and duration

SetAmbientLighting(LightingColor color, Timing timing)

/' Specify lighting fan group and speed

SetFans (Grouping groupValue, Speed speedValue)

/' Specify lighting strobes with a moving pattern

SetStrobes (Grouping groupValue, Pattern patternValue)

/! Invokes a generic show control event with the given cue
number. The cue

number must be between 0.01 and 9999.99

InvokelLightingCue (uint cueEvent, uint cueVariant)

/! Total teams in play

Teams:

Teams NO_TEAMS=0,

Teams.ONE_TEAM,

Teams. TWO_TEAMS,

Teams. THREE_TEAMS,

Teams. FOUR_TEAMS,

Teams . FIVE_TEAMS,

Teams.SIX_TEAMS

/' Available overhead lighting that is based on total teams in
play

/' Available lighting colors

25
LightingColor:
LightingColor.RED,
LightingColor. ORANGE,
LightingColor. AMBER,
LightingColor. YELLOW,
LightingColor.GREEN,
LightingColor.CYAN,
LightingColor.BLUE,
LightingColor. LIGHT_BLUE,
LightingColor MAGENTA,
LightingColor. LAVENDER,
LightingColor.PINK,
LightingColor, WARM_WHITE,
LightingColor. NEUTRAIL,_WHITE,
LightingColor. COOL,_WHITE,
LightingColor.BLACK,

LightingColor.RED_AMBER_YELLOW,

LightingColor. BLUE_CYAN_GREEN,
LightingColor.RED_BLUE,
LightingColor AMBER_BLUE,
LightingColor.RED_WHITE_BLUE,
LightingColor.RED_PINK_PURPLE
//Available light groupings
Grouping:

Grouping.ALL,

Grouping. FRONT,

Grouping. BACK

/' Available intensity levels
Level:

Level.OFF,

Level. LOW,

Level. MEDIUM,

Level HIGH

/! Available speed

Speed:

Speed.OFF,

Speed. LOW,

Speed MEDIUM,

Speed HIGH

/! Available duration
Duration:

Duration.SHORT,

Duration. MEDIUM,

Duration. LONG

/I Available movement pattern
Pattern:

Pattern. LEFTRIGHT,

Pattern. RIGHTLEFT,

Pattern. CLOCKWISE,

Pattern. COUNTERCLOCKWISE,
Pattern. RANDOM1,

Pattern. RANDOM2,
Pattern.ONE_BURST,

Pattern PAPARAZZI
//Available pulse patterns
Pulse:

Pulse. ALL_FULL,
Pulse.ALL_50_PERCENT,
Pulse.ALL_25_PERCENT,
Pulse. LEFT_RIGHT,

Pulse. RIGHT_LEFT,

Pulse. CENTER_OUT
//Available timings

Timing:

Timing.ZERO,

Timing.ONE,

Timing. THREE,

US 9,566,510 B2

10

15

20

25

30

35

40

45

50

55

60

65

26
Timing FIVE,
Timing. TEN
// Available Cue Events
Cue Events:
ShowControllnterface. CUE_WALK_IN,
ShowControllnterface. CUE_GAME_LAUNCH,
ShowControllnterface. CUE_FIND_LOCATION,
ShowControllnterface. CUE_IDENTIFY_TEAMS,
ShowControllnterface. CUE_ TRAINING_MODE,
ShowControllnterface. CUE_ GAME_START,
ShowControllnterface. CUE_TENSION_SLOW,
ShowControllnterface. CUE_TENSION_MEDIUM,
ShowControllnterface. CUE_TENSION_FAST,
ShowControllnterface. CUE_TENSION_NONE,
ShowControllnterface. CUE_END_ROUND,
ShowControllnterface. CUE_INTERMISSION,
ShowControllnterface. CUE_ANNOUNCE_LEAD-

ING_TEAM,

ShowControllnterface. CUE_IDENTIFY_LEADING _

PLAYER,

ShowControllnterface. CUE_GAME_FINALE

Here are some more Unity Examples:

/laccess show control interface
howControl=ShowControllnterface.Instance;

//set team mode to “no teams”
showControl.SelectTeamIightingMode(0);

//set team mode to “4 teams”
showControl.SelectTeamIightingMode(4);

//set team mode to “2 teams”
showControl.SelectTeamIightingMode(2);
//highlight player 2 for a short duration
showControl. HighlightPlayer(2,Duration. SHORT);
//set lighting for team 2 to red over three seconds
showControl.SetLightingForTeam(2, LightingColor.RED,

Timing. THREE);

//set lighting accents to green over three second
showControl.SetLightingAccents(LightingColor.GREEN,

Timing. THREE);

//set lighting wash color to cyan over three seconds

showControl.SetLightingWash(LightingColor.CYAN, Tim-
ing. THREE);

//set ambient lighting to cyan over ten seconds

SetLightingPulse(Pulse. ALL,_FULL);

//set ambient lighting to cyan over three seconds

showControl.SetAmbientLighting(LightingColor.CYAN,

Timing. THREE);

/set all fans to medium speed
showControl.SetFans(Grouping.ALL, Speed MEDIUM);
//set strobe lights for the front to run clockwise
showControl.SetStrobes(Grouping. FRONT,

CLOCKWISE);

The cues are defined as a special address endpoint com-
bined with a payload of numbers that is sent as a UDP packet
(formatted as OSC). This allows cues to be constructed from
method calls where a developer supplies parameters that
determine which exact cue will be sent. The OSC messages
are sent over a physical link between the Mac Pro 830 and
the PRG node 860 (via the Cisco switch 820) which provides
a robust channel of communication.

Extensibility for the lighting system can be provided. For
lighting events, any arbitrary floating point number can be
supplied (even if not yet bound to anything). Extensibility
could use programming by Full Flood).

Another way to provide extensiblity is to add new param-
eters to the ShowControllnterface class which is part of the
Unity codebase for ESC. This also puts those changes in the
programming of the PRG lighting software or hardware.

Pattern.

US 9,566,510 B2

27

The analytics track events, including:

game load

game start

game end

game pause

round start

round end

controller joins game

controller leaves game

FIG. 12 shows an overall flow diagram between the
different modules FIG. 12 shows at the top the docent 1200,
forming a layer that communicates with the game launcher
1210, that communicates with the game server 1215 that
communicates with the multiple different client applications.
The docent interacts with a number of games shown at 1201,
each of which has a title and ID. In order to start a game, at
1202, the docent creates a command using the game ID sent
to the game launcher with the option to load. At 1211, the
game launcher creates a quit game command including the
game ID to start the operation. This causes the game server
to end any current game at 1216, which is which command
is sent to the client apps. The client apps return to their home
controller scene at 1221 in preparation for a new game.

The game server sends at 1217 and 1218 commands to all
the different registered addresses to load the controller scene
for the new game at 1222.

At 1203, after giving time for all this to occur, the
command for the game is started. This then sends the game
1D to start the command at 1212, which causes a game start
command to be sent at 1219. This starts the round at 1230
with the new game.

The docent application can also cause the game to pause
1204, which sends a command to pause the game at 1213,
causing the game pause command at 1231 sent to all the
registered controllers. This may cause the round 2 at 1232 at
which time all the developer events are sent at 1233 both to
the clients and from the clients.

The game can also be ended at 1205 by the docent at
which causes the game launcher to send a quit game
command at 1214, causing the game to end at 1235. Again,
this causes the controllers to each return to their home
controller scene at 1223.

Although only a few embodiments have been disclosed in
detail above, other embodiments are possible and the inven-
tors intend these to be encompassed within this specifica-
tion. The specification describes specific examples to
accomplish a more general goal that may be accomplished
in another way. This disclosure is intended to be exemplary,
and the claims are intended to cover any modification or
alternative which might be predictable to a person having
ordinary skill in the art. For example, other kinds of games
can use the techniques described herein, and other objects
can be controlled in this way.

Those of skill would further appreciate that the various
illustrative logical blocks, modules, circuits, and algorithm
steps described in connection with the embodiments dis-
closed herein may be implemented as electronic hardware,
computer software, or combinations of both. To clearly
illustrate this interchangeability of hardware and software,
various illustrative components, blocks, modules, circuits,
and steps have been described above generally in terms of
their functionality. Whether such functionality is imple-
mented as hardware or software depends upon the particular
application and design constraints imposed on the overall
system. Skilled artisans may implement the described func-
tionality in varying ways for each particular application, but

10

15

20

25

30

35

40

45

50

55

60

65

28

such implementation decisions should not be interpreted as
causing a departure from the scope of the exemplary
embodiments.

The wvarious illustrative logical blocks, modules, and
circuits described in connection with the embodiments dis-
closed herein, may be implemented or performed with a
general purpose processor, a Digital Signal Processor (DSP),
an Application Specific Integrated Circuit (ASIC), a Field
Programmable Gate Array (FPGA) or other programmable
logic device, discrete gate or transistor logic, discrete hard-
ware components, or any combination thereof designed to
perform the functions described herein. A general purpose
processor may be a microprocessor, but in the alternative,
the processor may be any conventional processor, controller,
microcontroller, or state machine. The processor can be part
of'a computer system that also has a user interface port that
communicates with a user interface, and which receives
commands entered by a user, has at least one memory (e.g.,
hard drive or other comparable storage, and random access
memory) that stores electronic information including a pro-
gram that operates under control of the processor and with
communication via the user interface port, and a video
output that produces its output via any kind of video output
format, e.g., VGA, DVI, HDMI, displayport, or any other
form. This may include laptop or desktop computers, and
may also include portable computers, including cell phones,
tablets such as the IPAD™, and all other kinds of computers
and computing platforms.

A processor may also be implemented as a combination of
computing devices, e.g., a combination of a DSP and a
microprocessor, a plurality of microprocessors, one or more
microprocessors in conjunction with a DSP core, or any
other such configuration. These devices may also be used to
select values for devices as described herein.

The steps of a method or algorithm described in connec-
tion with the embodiments disclosed herein may be embod-
ied directly in hardware, in a software module executed by
a processor, using cloud computing, or in combinations. A
software module may reside in Random Access Memory
(RAM), flash memory, Read Only Memory (ROM), Elec-
trically Programmable ROM (EPROM), Electrically Eras-
able Programmable ROM (EEPROM), registers, hard disk,
a removable disk, a CD-ROM, or any other form of tangible
storage medium that stores tangible, non transitory computer
based instructions. An exemplary storage medium is coupled
to the processor such that the processor can read information
from, and write information to, the storage medium. In the
alternative, the storage medium may be integral to the
processor. The processor and the storage medium may reside
in reconfigurable logic of any type.

In one or more exemplary embodiments, the functions
described may be implemented in hardware, software, firm-
ware, or any combination thereof. If implemented in soft-
ware, the functions may be stored on or transmitted over as
one or more instructions or code on a computer-readable
medium. Computer-readable media includes both computer
storage media and communication media including any
medium that facilitates transfer of a computer program from
one place to another. A storage media may be any available
media that can be accessed by a computer. By way of
example, and not limitation, such computer-readable media
can comprise RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic
storage devices, or any other medium that can be used to
carry or store desired program code in the form of instruc-
tions or data structures and that can be accessed by a
computer.

US 9,566,510 B2

29

The memory storage can also be rotating magnetic hard
disk drives, optical disk drives, or flash memory based
storage drives or other such solid state, magnetic, or optical
storage devices. Also, any connection is properly termed a
computer-readable medium. For example, if the software is
transmitted from a website, server, or other remote source
using a coaxial cable, fiber optic cable, twisted pair, digital
subscriber line (DSL), or wireless technologies such as
infrared, radio, and microwave, then the coaxial cable, fiber
optic cable, twisted pair, DSL, or wireless technologies such
as infrared, radio, and microwave are included in the defi-
nition of medium. Disk and disc, as used herein, includes
compact disc (CD), laser disc, optical disc, digital versatile
disc (DVD), floppy disk and blu-ray disc where disks
usually reproduce data magnetically, while discs reproduce
data optically with lasers. Combinations of the above should
also be included within the scope of computer-readable
media. The computer readable media can be an article
comprising a machine-readable non-transitory tangible
medium embodying information indicative of instructions
that when performed by one or more machines result in
computer implemented operations comprising the actions
described throughout this specification.

Operations as described herein can be carried out on or
over a website. The website can be operated on a server
computer, or operated locally, e.g., by being downloaded to
the client computer, or operated via a server farm. The
website can be accessed over a mobile phone or a PDA, or
on any other client. The website can use HTML code in any
form, e.g., MHTML, or XML, and via any form such as
cascading style sheets (“CSS”) or other.

Also, the inventor(s) intend that only those claims which
use the words “means for” are intended to be interpreted
under 35 USC 112, sixth paragraph. Moreover, no limita-
tions from the specification are intended to be read into any
claims, unless those limitations are expressly included in the
claims. The computers described herein may be any kind of
computer, either general purpose, or some specific purpose
computer such as a workstation. The programs may be
written in C, or Java, Brew or any other programming
language. The programs may be resident on a storage
medium, e.g., magnetic or optical, e.g. the computer hard
drive, a removable disk or media such as a memory stick or
SD media, or other removable medium. The programs may
also be run over a network, for example, with a server or
other machine sending signals to the local machine, which
allows the local machine to carry out the operations
described herein.

Where a specific numerical value is mentioned herein, it
should be considered that the value may be increased or
decreased by 20%, while still staying within the teachings of
the present application, unless some different range is spe-
cifically mentioned. Where a specified logical sense is used,
the opposite logical sense is also intended to be encom-
passed.

The previous description of the disclosed exemplary
embodiments is provided to enable any person skilled in the
art to make or use the present invention. Various modifica-
tions to these exemplary embodiments will be readily appar-
ent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments without
departing from the spirit or scope of the invention. Thus, the
present invention is not intended to be limited to the embodi-
ments shown herein but is to be accorded the widest scope
consistent with the principles and novel features disclosed
herein.

10

15

20

25

30

35

40

45

50

55

60

65

30

What is claimed is:

1. A game system, comprising:

a game computer, running a game by communicating with
multiple remote players playing the game by sending
and receiving information from computers associated
with the multiple remote players,

said game computer sending game events in a way that is
guaranteed to be received in the order that the events
were dispatched, said game computer preventing fur-
ther operations related to the event until an acknowl-
edgement of the event is received by the game com-
puter,

and said game computer also sending states as a list of
variables that are updated at intervals, and where the
game computer does not receive acknowledgements of
the states,

where said game events are information that is needed by
the game to synchronize properly, and said states are
values that change constantly and where a new value of
a state replaces an old value of the state,

where a first event sent to a first controller is an initiation
event that has information that adds said first controller to
said game;

a lighting controller, which produces lighting outputs which
control overhead lighting projectors to respectively illumi-
nate different ones of the remote players based on actions
programmed into the game computer; and

an audio controller, which controls producing of audio
outputs, said audio outputs being programmed to produce
audio to a location of a specific player based on actions of
the specific player and based on actions that are programmed
to occur in the game.

2. The system as in claim 1, wherein said where said
initiation event includes a team parameter indicating which
of a plurality of multi-player teams the remote player is on
and also sends information about the team.

3. The system as in claim 2, wherein one of the events
comprises a command to set different a first lighting color
for all of first multiple players on a first team, and a second
lighting color for all second multiple players on a second
team.

4. The system as in claim 1, wherein said where said states
are set using a state variable dictionary that is updated by
both said game computer and by said first controller.

5. The system as in claim 1, wherein said multiple remote
players are communicated with via wireless communica-
tions.

6. The system as in claim 1, wherein said intervals are set
by a variable integer that represents how many times per
second the state updates are synchronized and where said
variable integer is changed to set a number of times per
second that the state updates are synchronized.

7. The system as in claim 1, wherein said game computer
stores locations of credential keys and analytics for the
games.

8. The system as in claim 1, wherein one of the events
comprises a command to cause the overhead lighting to
illuminate an individual remote player for a specified dura-
tion of time and to stop illuminating the individual remote
player after the specified duration of time.

9. The system as in claim 1, wherein one of the events
comprises a command to move the position in which the
lighting is pointing in a specified pattern, as part of the game.

10. A computer system for interfacing with a game
system, comprising:

US 9,566,510 B2

31

a computer, playing in the game by sending and receiving
information from a main computer that is running the
game;

said computer receiving game events in a way that is
guaranteed to be received in the order that the events
were dispatched, said computer preventing further
operations related to the event until an acknowledge-
ment of the event is received by the computer,

and said computer also receiving and updating states as a
list of variables that are updated at intervals,

where said game events are information that is needed by
the game to synchronize properly,

and where said states are values that change based on
actions of the computer in the game,

where a first event received by said computer is an
initiation event that has information that adds said
computer to said game along with other computers and
takes no action to add said computer to the game until
receiving an acknowledgement,

and where said computer updates said states during play-
ing of the game without receiving acknowledgement.

11. The system as in claim 10, wherein said initiation
event includes a team parameter indicating on which of a
plurality of multiple player teams the computer will play,
and also includes information about the team.

12. The system as in claim 10, wherein said where said
states are stored and sent using a state variable dictionary
that is updated by both said computer and by said game
system.

13. The system as in claim 10, further comprising com-
municating with the game system via wireless communica-
tions.

14. The system as in claim 10, wherein said intervals are
set by a variable integer that represents how many times per
second the state updates are synchronized.

15. The system as in claim 10, further comprising a
lighting controller, which produces lighting outputs which
control overhead lighting projectors to respectively illumi-
nate different ones of the remote players based on actions
programmed into the computer; and

an audio controller, which controls producing of audio
outputs, said audio outputs being programmed to pro-
duce audio to a location of a specific player based on
actions of the specific player and based on actions that
are programmed to occur in the computer.

10

15

20

25

30

35

40

32

16. A method of operating a game on a game computer,
comprising:

running a game on the game computer, by communicating

with multiple remote players playing the game by
sending and receiving information from computers
associated with the multiple remote players,

said running comprising sending game events in a way

that is guaranteed to be received in the order that the
events were dispatched, said running preventing further
operations related to the event until an acknowledge-
ment of the event is received,

and said running also comprising sending states as a list

of variables that are updated at intervals, and where the
game computer does not receive acknowledgements of
the states,

where said game events are information that is needed by

the game to synchronize properly, and said states are
values that change constantly and a new value replaces
an old value,

sending a first event to a first controller as an initiation

event that has information that adds said first controller
to said game;

produces lighting outputs which control overhead lighting

projectors to respectively illuminate different ones of
the remote players based on actions programmed into
the game computer as part of the game; and
producing audio outputs to a location of a specific player
based on actions of the specific player and based on
actions that are programmed to occur in the game.

17. The method as in claim 16, wherein said where said
initiation event includes a team parameter indicating which
of a plurality of multi-player teams the remote player is on
and also sends information about the team.

18. The method as in claim 17, wherein one of the events
comprises a command to set a first lighting color for all of
first multiple players on a first team, and a second lighting
color for all second multiple players on a second team.

19. The method as in claim 16, wherein one of the events
comprises a command to cause the overhead lighting to
illuminate an individual remote player for a specified dura-
tion of time and to stop illuminating the individual remote
player after the specified duration of time.

20. The method as in claim 16, wherein one of the events
comprises a command to move position in which the light-
ing is pointing in a specified pattern, as part of the game.

#* #* #* #* #*

