a2 United States Patent

Mast

US011774933B2

US 11,774,933 B2
Oct. 3, 2023

(10) Patent No.:
45) Date of Patent:

(54)
(71)
(72)
(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

(58)

STAGE AUTOMATION SYSTEM
Applicant: Exato IP LL.C, Lancaster, PA (US)
Inventor: Ryan Mast, Lancaster, PA (US)

Assignee: Exato IP LLC, Lancaster, PA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 149 days.

Appl. No.: 17/469,583

Filed: Sep. 8, 2021

Prior Publication Data

US 2022/0043415 Al Feb. 10, 2022

Related U.S. Application Data

Continuation of application No.
PCT/US2020/046476, filed on Aug. 14, 2020, which
is a continuation of application No. 16/751,984, filed
on Jan. 24, 2020, now Pat. No. 11,385,610.

Provisional application No. 63/075,616, filed on Sep.
8, 2020, provisional application No. 62/938,118, filed
on Nov. 20, 2019, provisional application No.
62/887,998, filed on Aug. 16, 2019.

Int. CL.

GO5B 19/042 (2006.01)

U.S. CL

CPC .. GO5B 19/042 (2013.01); GO5SB 2219/25011

(2013.01)
Field of Classification Search

CPC ... GO5B 19/042; GO5B 2219/25011; GO5B
2219/2664; GO5B 19/0426
USPC i 294/82.12; 472/78

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0055231 Al 3/2011 Huck et al.

2015/0231524 Al 8/2015 Fisher
2017/0060979 Al 3/2017 Webster et al.
(Continued)

FOREIGN PATENT DOCUMENTS

CN 208130517 U 11/2018

OTHER PUBLICATIONS

English Machine Translation of Chen Wenhui, “Stage Convenient to
Scene Switch”, Nov. 23, 2018, Publication Number #208130517
(Year:2018).

(Continued)

Primary Examiner — Mohammad Ali
Assistant Examiner — Sheela Rao
(74) Attorney, Agent, or Firm — Suiter Swantz pc llo

(57) ABSTRACT

A stage automation system, may include: at least one pro-
cessor device implementing a physics engine; at least one
memory device; one or more instructions stored in the
memory device that, when executed by the at least one
processor device implementing a physics engine, configure
the at least one processor device for: receiving at least one
target case corresponding to a user-interface specified posi-
tion of a virtual object representative of a real-world object
within a virtual space representative of a real-world space;
providing position data defining the target case as a seed
value to a physics engine; computing at least one effect-of-
gravity solution from the seed value; comparing the effect-
of-gravity position solution to the target case to determine if
the effect-of-gravity position is within one or more position
tolerance values relative to the target case; and providing
user notification indicative of the comparison between the
effect-of-gravity solution and the target case.

16 Claims, 44 Drawing Sheets

102 STAGE AUTOMATION SERVER 14 LSER ITERFACE
'
13 i FET— LN
BROCESSCRS MEMORY NEUT BEVICE
DBEVICE -
e - \\\\\\
‘f""’ \\\~\
P T
AAAAAAAAAAAA Pl e
g6 106
EXECUTING | EXECUTING
PRCGRAM PROGRAM
re \‘\ - *\
~ . e N
~ ~ e Ny
- ~ o ~.
104a 1045 104 1044 jiibde 04
ACTIONABLE || ACTIONABLE IOHABLE ONABLE AUTIONABLE
MECHANISM || MECHANISM || MECHANISM MECHANIGM MECHANISM
V2N N
/S SN N\ / // N AN
d N P / N -
A 1070 142 103d Qze 204 iU 1820
ACTIONABLE || ACTIOMABLE | ACTIONABLE || ACTIONABLE {! ACTIONABLE || ACTIONASLE || ACTIONABLE || ACTIONABLE
ASSEMBLY ASSEMBLY ASSEMBLY ASEEMBLY ASSERBLY ASSEMELY ASSEMBLY ASSENBLY

US 11,774,933 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2019/0352144 Al* 11/2019 Huusko GO6T 7/248
2022/0185639 Al* 6/2022 Post B66D 3/18

OTHER PUBLICATIONS

Extended European Search Report dated Jul. 6, 2023; European
Application No. 20854298.5.

* cited by examiner

US 11,774,933 B2

Sheet 1 of 44

Oct. 3, 2023

U.S. Patent

ATEWISSY SIGWISSY XIGWISSY XIGWISSY XIIWISSY SIAWISSY JIEWISSY A1EWISSY
TIGVNOLLOY || 31aVNOI §< TIGVNOLLDY || 319YNOLLOY || J19YNOLLOY || J19YNOILOY || T18VNOILIV || T19vNOLLOV
THi) 1701 5751 5701 5701 a7y 70T
WSINVHOIW || WSINYHOIW || wsiNyHOIW WSINVHIIW || WSINVHOIW || WSINYHOIW
TIGVNOLLOY || TaYNOLOY || T1avNoLOY TIGVNOLLOY || 39YNOLLDY || JIVNOLLOY
o1 507 i) SH] oL T
WYESOUd WYHO0Ud
ONLLADEXG [T 7777 r e ONLLADIXE
4oG1 2401
INAIA
A0 L an AIOWEW L--1 SHossaD0ud
A7 14510 oA
g1t gi7 A gLl
TIVIUILN] B350 ST HIAYES NOLYWOLNY 39V1S 57

US 11,774,933 B2

Sheet 2 of 44

Oct. 3, 2023

U.S. Patent

20914

-

ﬁ AYOIAYd YIVQ v/
avOAvd 3907
G314 AING Ammmdwx ONOT V/i!..mcm

53V @waﬁx &ome/
P07
(4IQVIH LHOHS 7
ﬁ/!uNQN

a4¢'9ld
avOTAvd
Q3 LAAYINI m avO1AYd VAV
53V q907
Qmaﬁx ﬁmoxmv/:«ow
/m <07

VI Old

(avOmEVIVE ooy
(MAQVIH DIOHS oy

ﬂ//mmcm

US 11,774,933 B2

Sheet 3 of 44

Oct. 3, 2023

U.S. Patent

asey
{ushandivwin} Josuund,
e paduwels-suwiy
P07 {yshgnd)
(paunseawucilsod,

yqeLiea paduwels-ouig
Japooul 19I[qo
wieidoid paIngLisig

a01 1erias UoLHBLIoINY 980l

S5184
{ysngndi0} [1o8uun?),
FqeLA padweis-auwy
POz (ysignd)
JDpaunseawuoiysod,
aqeuss padwiels-sung

18ponu3 13390
WiRIBOd PINGLIISIQ

201 I2AISS UCLIBWIOINY 28835

35184
{usngndiu) [1Dsuun),
JqeURA padwels-sug
por (yshignd)
[painseawuonisod,
aiqeURA paduiels- o)
Japooud 1o
WRIB0Y paINGLIIsIQ

801 JoAias UCLIBUIOINY a8els

N\,

syepdn sygeues
paduiris-suiy

—

QOUNOULE FYGRIIEA
paduR)s-auit

opIYIp
1efqo wesdoig
paINgLIs]

Ve Old

asyej
{ysygndiuwio) Ja8uu0),
sjgeeA paduiels-ait)

POz (2qudsgns)
Jpainseawuoiisod,

sjqeLies paduels-awy
3@poouUg 122iG0
weoud penqriasig

Q01 1BAISS UOHIBLIOINY 25815

L usuoduny

{ysngndiuwio) Jnauuo’,
sjqeLies podue)s-auwy
{(Pquosans}
[painseawuoilsod,
syqeLies poduieis-swity
#2poouy 192{G0
wieidoly pangLasy

G0 19AI8S UDLBLIOINY 35815

t usuodwon

B 1BALSS UCHBWIOTNY 2881

L wsuodwon

US 11,774,933 B2

Sheet 4 of 44

Oct. 3, 2023

U.S. Patent

ani
{uyshigndiuwin} 33auu073,
yqeues padwels-oust}

0T {yspgnd)
(paunseawuotlisod,
syqeLIEA padwes-auy

ae ol

J8poauy 319390
widoid paInguIsi

7 IU2u0duiny

B5184
{ysnandiruo} Josuuny,
ayqeLies padusels-ay

yoz (ysignd)
Jaunseawuotisod,
syqeLies padiels-au]

J9poauy 313390
WeuBod pRINgLIsg

7 uduoduiny

J51e4
{ustigndiurun} Josuun],
syqeLIEA padwie)s-au]

¥07 {ystygnd)
[painseawuonisod,
ayqeLeA padueis-sw

Jaepoaul 1=i{qo
weiBoid paInguIsig

7 usuoduion

Mﬁ%a: S1qeLIBA
paduiris-sui

andy
{ysigndiiuo) Josuuo),
SjgriiRA paduivis-auL]

¥'07 (aguosqns)
[painseawuoilisod,

spgrLies padusels-awy
a3posuy 122{g0
weBoigd paIngqusiy

Q| 19A535 UOLIBWIOTNY 25815

asyey
{ysngndiuwio) Jnauuo’,
sjqeLies podue)s-auwy
707 (2quosgns)
Jpaanseawuciiisod,
sjqeLies paduieis-auity
42p0ou3 12360
WeIBold poIngusy

G0 19AISS UORUWIDINY B5R1E

asyey
{ysnigndiuwio} J0auu07,
sjgriies paduels-awg

0T {agudsgns)
[painseawuociisod,

syqeLies paduseis-aul
ABpo3uy 122{G0
wWeiBoud paInguasiy

Q0L 1B9AISS UOHRLIOINY 2581S

angy
{ysnigndpuuo} 1oauuoy,
FIGRLIBA Daduseis-auy]

Mummms JirLIes
paduseys-su]

a3epdn quLIRA
paduie)s-suyy

N\

07 {oquosgns)
[patnseawuoiyisod,
Mgeliep padwris-aui

Japoouy 109{qo
wieioid paIngLiIsig

R ENRG UG,

ann
{ysugndiuwio} [1o9Uu0Y,
FiqgeLiep padweis-awiy

p oz {oquosgns)
[Datnseawuoiisod,
SiqeLies paduieis aui]

Japooug 199(q0
wiRg8aid PIINGIISIQ

L JUSUoGIOT)

JUNCLUR IqRLIE;
paduiRis-aiL}

asyey
{ysStignGIULo) Io8UUc),
siqeLiep paduiis-au]

uonuysp
walgp weidoid
pangLasyg

P07 {squosgns)
Daunseayuniusod,
aigeniep padweis-auny

1epoouy 108090
uiesdnid pIINGIIISIQ

L usuodwon

US 11,774,933 B2

Sheet 5 of 44

Oct. 3, 2023

U.S. Patent

ann
{ysigndiuio} 3dauund,
Jgeriep padweis-awg

g'6F {yshgnd)
pounseapwuotisod,
aqeuiea poduieis-aun)

sspoouy 1o
weiBoid paInguasig

7 JUSUOGWOD)

N3
{yshgndiuuic) 3oeunio],
Jygeties padiuRls-auuL]

g6l {ysygnd)
Ppainseawuotyisod,
FjqeLiea, podiuels-aui)

seponul 13{0
wieiSoud paInguiIsiy

7 IuBUodWIo)

Bgo
2yepdn 2)geLIEA
paduiels-swiy

J€° 9l

anii
(yspgndiuwo} 31dauuo),
aigrLiepA padwels-aul |

26l {(Pqunsgns}
[Dasnseawuoiisod,
aqeLies padiueis-auny

Jsposuy 12elgn
wealoid panaIsiy

801 19AISG UCHBLIOINY 98815

ang
{ysngndiuwio} 3osuu07y,
jqeLies paduirls-swiy

v’ 0T (Squasgns)
. paunsrawuoyisod,

Nqerres paduris-auwty

J3posuy 1oslyp
WEIS0A] PaInquIsLy

801 9AIBS UOHRWOINY 28815

B
nepdn 21gRLIeA
padureis-awg

Y
{ysnandiuo) Josuuo’y,
sygeLiep paduweys-aug

g6l {(dquosgns}
[paanseawuonisod,
DYgeLies padueis-awi]

1apoouy 1e{qo
WRIBoid PoInNgLisiy

1 Jusuodny

aniy
{ysnigndiwo} J0suu0)D,
ajqeries paduwiels-su]

#'07 (dqudsgns)
Jpamseawuonisod,
Igerses padwels sui

13pooud 13e{qo
WRIB0Id PIINgUIIsL]

§ Jusunduc)

U.S. Patent Oct. 3, 2023 Sheet 6 of 44 US 11,774,933 B2

402%
//’

\\4()2c

105~/

405“’/
FIG.4

402¢
/

402b
\\\

Yelocity Clamp

U.S. Patent Oct. 3, 2023 Sheet 7 of 44 US 11,774,933 B2

¥
To
FiG.6F

| 4
1o
FiGG.6D

TCR/P network
To
FIG.6C

FIG 5

¥
To
FIG.6B

¥
To
FIG.6A

US 11,774,933 B2

Sheet 8 of 44

Oct. 3, 2023

U.S. Patent

L-¥9 Old

{usigndaiiuo; snEaey

{a0UDSONS) ANBABRY SREAR

{usyondiuuio) eneaey

{S0LI30DS5] BNBAEY

BHEAEY BNEARY

wissis Bunsisdo 1soy

U.S. Patent Oct. 3, 2023 Sheet 9 of 44 US 11,774,933 B2

From
FIG.6B-2

FIG 6A-2

US 11,774,933 B2

Sheet 10 of 44

Oct. 3, 2023

U.S. Patent

{ustiondiuio) snjeaey

{B0UOSaNSE) BNIBARY

any

BARY

BNBAEX

{Ustiandiuwio) anfepey

{801IoSUNS) BNEARY

BHBABK

wieishs Bunssedo 150y

US 11,774,933 B2

Sheet 11 of 44

2023

9

3

Oct.

U.S. Patent

¢-49 Sl

{usiond) enfeaey

{usuond} enjeary

{uspand} enjeaey

L-H9 914
WO

U.S. Patent Oct. 3, 2023 Sheet 12 of 44 US 11,774,933 B2

From
Fi(s.5

Emergency stop pendant

SBC 7 host operating system

G bhoard

i

emergency stop button

XaValue {publish)
XaValue {publish)

XaValue {fomnipublish

FIG 6C

U.S. Patent Oct. 3, 2023 Sheet 13 of 44 US 11,774,933 B2

From
FIG.5

DMX adapter
SBC/h

i DX XLE interface

KaValue (publish)
XaValue (Subscribs)

FIG 6D

U.S. Patent Oct. 3, 2023 Sheet 14 of 44 US 11,774,933 B2

From
FIG.5

23
Exato Drive enciosure

SBC /7 host operating system

To
® FIG.6E-2

XaValue {publish}

XaValue {omnipublish)

2

FIG 6E-1

U.S. Patent Oct. 3, 2023 Sheet 15 of 44 US 11,774,933 B2

%

Exato
universal plug physical axis
[\ f el Servomotor
,.,%-—-"“"’M
; : 3 W/l} l e brake
i indusirial servo drive [! &
o
Y Hmit switches
& ’ B identifier

Y] {0 board
&

From i ¥
FIG.6E -1 — emergency stop relays

®

FIG 6E-2

U.S. Patent Oct. 3, 2023 Sheet 16 of 44 US 11,774,933 B2

700\

qf;i/,»702d

701
702a

FIG.7A

US 11,774,933 B2

Sheet 17 of 44

Oct. 3, 2023

U.S. Patent

a4/, 9l4

e
N

Y o e
e e TN

S el ..\i..s..\L..\:al\ WIIMVOW

US 11,774,933 B2

Sheet 18 of 44

Oct. 3, 2023

U.S. Patent

LD

U.S. Patent Oct. 3, 2023 Sheet 19 of 44 US 11,774,933 B2

FIG.7D

U.S. Patent Oct. 3, 2023 Sheet 20 of 44 US 11,774,933 B2

FIG.7E

U.S. Patent Oct. 3, 2023 Sheet 21 of 44 US 11,774,933 B2

RECEIVING, FROM A FIRST EXECUTING PROGRAM, A
DISTRIBUTED PROGRAM OBJECT ANNOUNCEMENT
802 | INCLUDING A SET OF ONE OR MORE TIME-STAMPED
VARIABLES ASSOUIATED WITH A FIRST ACTIONABLE
MECHANISM SELECTIVELY CONTROLLED BY THE
FIRST EXECUTING PROGRAM

GENERATING A DISTRIBUTED PROGRAM OBJECT
804 ASSGCEATED WITH THE FIRST ACTIONABLE
MECHANISM, THE DISTRIBUTED PROGRAM OBJECT
INCLUDING THE SET OF ONE OR MORE
TIME-STAMPED VARIABLES

806~} TRANSMITTING THE DISTRIBUTED PROGRAM
OBJECT TO A SECOND EXECUTING PROGRAM

S0R ADJUSTING AT LEAST ONE TIME-STAMPED VARIABLE
TN OF THE DISTRIBUTED PROGRAM OBJECT BASED ON
THE ONE OR MORE RECEIVED DATA PACKETS

TRANSMITTING ONE OR MORE DATA PACKETS TO

810~ THE FIRST EXECUTING PROGRAM INDICATIVE OF

THE AT LEAST ONE ADJUSTED
TIME-STAMPED VARIABLE

SELECTIVELY ADJUSTING ONE OR MORE

812 CHARACTERISTICS OF THE FIRST ACTIONABLE

MECHANISM ASSOCIATED WITH THE AT LEAST ONE
ADJUSTED TIME-STAMPED VARIABLE

FIG.8

U.S. Patent Oct. 3, 2023 Sheet 22 of 44 US 11,774,933 B2

o o
= g 2
g 3
0 i
c.) A,
\ e
3
3 3
‘ D
&
.............. ‘_ua,,.,“. PR
o
@ o o Li.
= s &
7
!/
- / /
s 3 //
&2 L ¢ (
S
\\\\
e
\ \\
A\
VY
!/
/
//
/
/ /
) ({
g < '\
. g AN
H o)
& \\\

US 11,774,933 B2

Sheet 23 of 44

Oct. 3, 2023

U.S. Patent

gris

q266

OB YZo6 -

S
g4006

d6 'Old

av06

206

VP06

Y006 -7

US 11,774,933 B2

Sheet 24 of 44

Oct. 3, 2023

U.S. Patent

wyz

26 Old

US 11,774,933 B2

Sheet 25 of 44

Oct. 3, 2023

U.S. Patent

A
NN
06 -7 NS
/////\.\\.\M\\M\///
/..\\\\\\\ /./././. —T
j ////\\\\M\\)
e H
Y36 | :
L ro
) 3

KKK

vzos—

de olid

PN
~.
SO8 WH///I/ \\\\\\\\\// ///// \\\\A
08 R e :
T T
G
2406 ov06 vpos | 3

US 11,774,933 B2

Sheet 26 of 44

Oct. 3, 2023

U.S. Patent

0L ©ld

T HEIER |
B BORISOS

W SEL A MOS0

cul s m.#

Y206

US 11,774,933 B2

Sheet 27 of 44

Oct. 3, 2023

U.S. Patent

Ll 'Ol

. BRE 7 Uty
Wi PG Y LDISOM

W A OBty
.,
o b EE - HORE0Y \
WBE UK uonsldg M
U LG A BRSO o6
\\
€06
paf meyow gEs
/
N N
-8Z06 vTo6

U.S. Patent Oct. 3, 2023 Sheet 28 of 44 US 11,774,933 B2

FIG. 12A

U.S. Patent Oct. 3, 2023 Sheet 29 of 44 US 11,774,933 B2

FIG. 12B

U.S. Patent Oct. 3, 2023 Sheet 30 of 44 US 11,774,933 B2

FIG. 12C

U.S. Patent Oct. 3, 2023 Sheet 31 of 44 US 11,774,933 B2

FIG. 12D

US 11,774,933 B2

Sheet 32 of 44

Oct. 3, 2023

U.S. Patent

MDA BAGIDES R

ANEEA 3013

Vel Old

s rdosg,

Mt BPIE

U.S. Patent Oct. 3, 2023 Sheet 33 of 44 US 11,774,933 B2

Fyong visw

Prvanactive view

FIG. 13B

Tof visw
&

Sitde Yiew

US 11,774,933 B2

Sheet 34 of 44

Oct. 3, 2023

U.S. Patent

MaA DAESIRG

MAANA {4054

el oOld

i day

sah My

U.S. Patent Oct. 3, 2023 Sheet 35 of 44 US 11,774,933 B2

Frent visw
Persprotive vigw

FIG. 13D

Fogr yiew

Bige view

U.S. Patent Oct. 3, 2023 Sheet 36 of 44 US 11,774,933 B2

frond view

Perspective view

FIG. 13E

S view

US 11,774,933 B2

Sheet 37 of 44

Oct. 3, 2023

U.S. Patent

RS AAdE IR

2B WIS

4€1 'Ol

oy

PR

U.S. Patent

Front visw
y

Sirde vigw

Oct. 3, 2023

Porspective view

Sheet 38 of 44

fop view

US 11,774,933 B2

FIG. 136G

U.S. Patent Oct. 3, 2023 Sheet 39 of 44 US 11,774,933 B2

Perspettive view

Front view
N

FIG. 13H

Top view
|

Sidda visw

U.S. Patent Oct. 3, 2023 Sheet 40 of 44 US 11,774,933 B2

&

Z 2

A &
> e

& 2
5 %

2 .

i 2
ot

Q.

FIG. 131

Siddeoview
Top view

U.S. Patent Oct. 3, 2023 Sheet 41 of 44 US 11,774,933 B2

el RN

; . N ~,
/ Swive far 3D object position given targes 303 B
N positinn/onentation sivd consialng aftachmerd points. /./
o, e

Use nached lockup table or machin wing maode! (o set seed 30 pbiect
positiar/orierdation (o espected approxiveate fesiult) otherwise, Set rigged 30
abyect’s sead position/orientatdon 10 gives targel position/onantation.

Set sigrgad 30 object’s seed posiion’s
sefening cues axes Yo their inftiat given
values, Set @) other axes 1o 2 new valise,
using g Pily ration of the physic’s
enging’s output avnd the iniiad given value.

%

Create physics engine environmarnt ta simulate ry

Givan riggend 30 olfent, constratims, gravity, and
existing s ds.

‘;‘ Use pached lochup table or macking learning maded 1o get
soed 30 ebject position/odent o expactad
approximale resull atherwise, 56t rigged 30 shiset’s sead
positionsorientation o given target positiansorentation.

Set constraint macmum angths o the cureent
distanoe Betweer thal tigging attachment

poins and static attachment paints,
Step physics engine eajoulator Gy predetenmined e
time steg and increment step sount by 1. -
et e
a—z""”f \\\«—‘,_
e 45 30 Dbject's physicn oblect’s TNl
R . valochy Jess shan predetesmined e
\\sﬁkgssihoéd {262 mis. 21 dwiigc}g,,wm Mo
T ¥
Yes Beat fow vadooity step
) cownes W,
ncramend inw yalcciy
step counter Wy 3,
IR Sowr welacity Step sounter
wﬁi?er than pedeumined 0> i
threshnld {217 ” Ho P
., /,»»/ - - \\\\
- o~ :
7 msiep ot gremer than M|
\\\\ fjfesgsermsned tnrashcii?, ,/”/”
e o
\\ I//
g
Ves i
Na
e \\\ SN
-~ v .
18 e differenue between the values fos the e “/3° Herrtion cmmte\;\
e : . . ~ : g e
cuass ceordingte axes from the physics incramant Reration | B < greater than >
-~ ngine's 40 object and the given target 30 Caunter by . . predetermined Vs
‘\xgg’.ii?mn al withins pradetenvined margms?,,/ N, (weshold?
T N Ve
\\ e . Ve
~ - \./.
You i ves
¥
v \\\ - e
(Behan suived 30 ohijest position kY (Behrn solved 30 objent position kS
with iggh condisence J N vl dow confidence. /}
\x\w e S e

FIG. 14

U.S. Patent

Oct. 3,2023 Sheet 42 of 44

-~
e Solve for 30 ohject position, given target 30 ~,
position/onentation, cursent 3D oblect velceity and \
g positian, constraint attachimant points, 3D aiyect \
} ftraits, and srivator Constraind) imits, curen j
\. actuator velooity and pasition, snd t

o doils betwesn
current states and target 3D position/orientation. . /

US 11,774,933 B2

3 position
'''''''''''''''''''''' e swoeed its Hmits for ranstation or \\\\)
é orertation, for maximum/mininum et

Oreate new target 50
position/orientation, constrained by

\\\{-sétiomoriemaﬁon o ve!ocity?/”

“-\\’//

¥

Propartionaliy reduce the
distanoe and rotation
waveled from the inftist 30
shiect position to the wget
3D abject position, basad on
how far the new position
exceeded aciuator imits,
Creste a new, reduced target

. . . X 30 position & orie
Sobes Tor 30 object pasition ghven 4
target 44 position/arientation angd »
vonstraint aiachment points
¥ o
increment iteration
countas by 1
? S, _,/'/ \\
/” \\""\‘ /'/ S
"Tzfle e new constraint lengths -~ d ™
>) CORSTIaMNT & 3 ~ . .
,,// e es L L 9 \“\\ / 1% iteration oount gwm}\
o within thelr actustor lmits for e N B . ; ~
<‘\ T inia U posiion of o ~ than predeterminad -~
~ B T - threshaigy -~
. yelocity? - o P
~ o ~ e
T e \\ o gl
N
| ves Yag
/ d
- S
/f’/f)is'j the sob A\‘\-\
< = h high >
S confidence? T e
. o
\ -
-
ol
i Yos
¥ h
/7 Return solved 3D object position N / Return solved 30 object position ™
and actustos lengthe/positions withs ;% { s actustor lengths/pasitons }
e figh confidencs. i . with fow vosfidenes. o

FIG. 156

U.S. Patent Oct. 3, 2023

/

o
(Suive for 313 obijset position given
,_ consteaint attachment goints and lengths.

R é_ "

i

e

e

Sheet 43 of 44

US 11,774,933 B2

Cregte physics engine snvironment 1o skrulate
given rigged 30 ohisot, congtrains, constraint
tetugths, gravity and existing inertia.

v

Ret rigged 3D object's starting position centered
hetwesn stalic cangtraing aitechment points.

¥

Step physics sagine celcufator by predetanmingd
e stef and inorement step count by 1

¥

o
_,,.’-f“'-a.\.“

f,,,«""” R
e i B0 objects physios cbje;g\\\%

e

<.

velocity lass than predeteeminad

T dyreshald (6.02 mis, 0. éegffef}j,,m'”
e

\"‘». e

Yes

incrament low velogity
Ftep aounter by 1.

3

Ket fow veiosiy siep
counter 10 3

M/’f:’;’;ow veloriy siep csungé?‘\»\\
greater than pradetermined

“‘*\\ thrnstinld (37 Pt
- //

-

; Yes
.,

-
o~

.r’/ .
e i5 the differense e
" hstween mensured langthe between 300
riggaed object sttachment poims and
static attachment puinis and the givens

x\\ consteaint lengths less than o
. predetenmingd theeshold? "
S -~

~ -~
\\\\wf”

.

oo,

o
e

-
- . -
{ Bewrn solved 8D sbject position

\\ with high confidenge. 7
o

S

T

ig step ootay greales than
peagdetermined threshold?
oy

o~

.,

AN
e

\\)

o

Yes

7 A N
{ Beturr solved 30 objest position \‘_
with fow confidence

U.S. Patent Oct. 3, 2023 Sheet 44 of 44 US 11,774,933 B2

S Craste physics engine environment 1o)
{ sievastate given rigged 30 oliest, }
\\\(ienszraims, gravity, and exigting inertia, /

e

N

N

.///l
//’/ Doss nschm
g phygios
environmernt)
i)
exiur? /,.»/ *
~, v

T

Yes Create new obiects in physios engine (o represent
the rigged 33 ohipot, constraints conreoted to the 3D
shiect and a stetic position, and any other
parameters specifis 1o the physics engine software
o adapt i 1o the Exato sodesy application.

¥

Set intial positions foy rigged 30
ofsject, inftial positions nonstraing
attachiment points o ghven 30
alsject avd static positions, and
given center of grevity of 30 object.

4

/"/\\
- x\
,f//;:!em songtraint ~
M< maxirnar fengtha />-MMMM
e given? e
s e No
A
Set rasxdimury length of Set the maxivann lengih of physios engine
physics angine constraints o the distance from the 30 position of
conglraints 1o the attachment points on rigged 30 object to the 30
wiven length. positon of thely giatic gitachment points.

¥

Return ready physios }
environment objeat. /
o

RN

FIG. 17

US 11,774,933 B2

1
STAGE AUTOMATION SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority under 35 U.S.C. §
119/120 to:

1) U.S. Provisional Patent Application Ser. No. 62/887,
998, entitled STAGE AUTOMATION SYSTEM, filed
Aug. 16, 2019, naming Ryan Mast as an inventor,

2) U.S. Provisional Patent Application Ser. No. 62/938,
118, entitled STAGE AUTOMATION SYSTEM, filed
Nov. 20, 2019, naming Ryan Mast as an inventor,

3) U.S. patent application Ser. No. 16/751,984 U.S. Pat.
No. 11,385,610 B2, entitled STAGE AUTOMATION
SYSTEM, filed Jan. 24, 2020, naming Ryan Mast as an
inventor,

4) International Patent Application Serial No. PCT/US20/
46476 entitled STAGE AUTOMATION SYSTEM,
filed Aug. 14, 2020, naming Ryan Mast as an inventor,
and

5) U.S. Provisional Patent Application Ser. No. 63/075,
616, entitled STAGE AUTOMATION SYSTEM, filed
Sep. 8, 2020, naming Ryan Mast as an inventor, each of
which are incorporated herein by reference in the
entirety to the extent not inconsistent herewith.

TECHNICAL FIELD

The present invention generally relates to a system and
method for stage automation, and more particularly, a hard-
ware and protocol agnostic system and method for stage
automation.

BACKGROUND

In the context of live events, such as concerts, plays, and
sporting events, a plurality of various components and
machinery may be required to work in tandem with one
another in order to properly execute all of the movements
and features of the live event. For example, in the context of
a concert, a stage automation system may include lights,
stage elevators, and winches configured to move stage props
which all must execute individualized commands in tandem
(e.g., coordination) with one another throughout the duration
of the concert. However, many stage automation systems
include hardware from disparate manufacturers, which may
be configured to run on disparate software programs and
communication protocols. In this regard, conventional stage
automation systems do not have an efficient mechanism with
which to communicate and control each hardware device
within the stage automation system.

For example, many traditional stage automation systems
communicate with each other across a network (e.g., TCP/IP
network, serial/bus-style network such as RS-485 or CAN-
bus) by reading and writing indexed “registers” across the
network. To get information on the position and velocity of
a certain servo drive, a controller of traditional automation
systems would need to be programmed for to perform
common functions on a drive. For instance, turn on the
motor, release the brake, and move forward for various servo
drives, the controller may need to set three separate registers
on a first servo drive manufactured by a first manufacturer,
and two separate registers in a particular sequence on a
second servo drive manufactured by a second manufacturer.
In this example, in order for the controller to interact with
both the first servo drive and the second servo drive, it would

20

25

30

35

40

45

50

55

60

65

2

need to have a map of what register indexes perform certain
functions, whether each servo drive operates in 16/32/64-bit,
what endian type each servo drive uses for storing and
transmitting numerical data, and include specific program-
ming for how to perform specific functions on each of the
first servo drive and the second servo drive.

As shown in the example above, traditional stage auto-
mation systems including hardware and software from dis-
parate manufacturers require excessive, tedious program-
ming to enable efficient coordination and communication
between the various devices. Additionally, programming
must be performed for each hardware/software device of the
stage automation system, making conventional systems dif-
ficult to modify and/or expand. Therefore, there exists a need
in the art for a system and method which cure one or more
of the shortfalls of previous approaches identified above.

SUMMARY

A stage automation system is disclosed. In embodiments,
the stage automation system includes a first executing pro-
gram configured to selectively control a first actionable
mechanism, and a second executing program configured to
selectively control a second actionable mechanism. The
stage automation system may further include a stage auto-
mation server configured to: receive, from the first executing
program, a distributed program object announcement
including a set of one or more time-stamped variables
associated with the first actionable mechanism; generate a
distributed program object associated with the first action-
able mechanism, the distributed program object including
the set of one or more time-stamped variables; transmit the
distributed program object announcement to the second
executing program; receive one or more data packets from
the second executing program; adjust at least one time-
stamped variable of the distributed program object stored in
memory based on the one or more received data packets; and
transmit one or more data packets to the first executing
program. In embodiments, the one or more data packets are
configured to cause the first executing program to adjust the
at least one time-stamped variable of the distributed program
object associated with the first actionable mechanism, and
the first executing program is configured to adjust one or
more characteristics of the first actionable mechanism asso-
ciated with the at least one adjusted time-stamped variable.

A stage automation system is disclosed. In embodiments,
the stage automation system includes a stage automation
server communicatively coupled to one or more executing
programs via a network protocol. In embodiments, the stage
automation server is configured to: receive, from a first
executing program, a distributed program object announce-
ment including a set of one or more time-stamped variables
associated with an actionable mechanism running on the first
executing program; generate a distributed program object
including the set of one or more time-stamped variables in
memory; transmit the distributed program object to at least
one additional executing program; receive one or more data
packets from the at least one additional executing program;
adjust at least one time-stamped variables of the set of one
or more time-stamped variables of the distributed program
object stored in memory based on the one or more received
data packets; and transmit one or more data packets to the
first executing program. In some embodiments, the one or
more data packets are configured to cause the first executing
program to adjust at least one time-stamped variable of the
one or more time-stamped variables associated with the
actionable mechanism and adjust one or more characteristics

US 11,774,933 B2

3

of the actionable mechanism associated with the at least one
adjusted time-stamped variable.

A method is disclosed. In embodiments, the method
includes: receiving, from a first executing program, a dis-
tributed program object announcement including a set of one
or more time-stamped variables associated with a first
actionable mechanism selectively controlled by the first
executing program; generating a distributed program object
associated with the first actionable mechanism, the distrib-
uted program object including the set of one or more
time-stamped variables; transmitting the distributed pro-
gram object to a second executing program; receiving one or
more data packets from the second executing program;
adjusting at least one time-stamped variable of the distrib-
uted program object based on the one or more received data
packets; transmitting one or more data packets to the first
executing program indicative of the at least one adjusted
time-stamped variable; and selectively adjusting one or
more characteristics of the first actionable mechanism asso-
ciated with the at least one adjusted time-stamped variable.

BRIEF DESCRIPTION OF THE DRAWINGS

The numerous advantages of the disclosure may be better
understood by those skilled in the art by reference to the
accompanying figures in which:

FIG. 1 illustrates a simplified block diagram of a stage
automation system, in accordance with one or more embodi-
ments of the present disclosure.

FIG. 2A illustrates an announcement data packet of a
stage automation system, in accordance with one or more
embodiments of the present disclosure.

FIG. 2B illustrates a first stage handshake data packet of
a stage automation system, in accordance with one or more
embodiments of the present disclosure.

FIG. 2C illustrates a second stage handshake data packet
of a stage automation system, in accordance with one or
more embodiments of the present disclosure.

FIGS. 3A-3C illustrate a conceptual diagram of a time-
stamped variable with a publish variable mode and a time-
stamped variable with an omni-publish variable mode, in
accordance with one or more embodiments of the present
disclosure.

FIG. 4 illustrates a graph 400 depicting position and
velocity limits of a component executing commands, in
accordance with one or more embodiments of the present
disclosure.

FIG. 5 illustrates a conceptual diagram of a stage auto-
mation system, in accordance with one or more embodi-
ments of the present disclosure.

FIGS. 6A-1-6E-2 illustrate conceptual diagrams of a stage
automation system, in accordance with one or more embodi-
ments of the present disclosure.

FIGS. 7A-7E illustrate a three-dimensional (3D) tracking
system of a stage automation system, in accordance with one
or more embodiments of the present disclosure.

FIG. 8 illustrates a flowchart of a method for operating a
stage automation system, in accordance with one or more
embodiments of the present disclosure.

FIGS. 9A-131 illustrate user interface views representa-
tive of object position modeling computations by a stage
automation system.

FIGS. 14-17 illustrate process flow diagrams showing
various processing operations for object position modeling
computations.

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION OF THE
INVENTION

Reference will now be made in detail to the subject matter
disclosed, which is illustrated in the accompanying draw-
ings.

Referring generally to FIGS. 1-8, the present disclosure is
generally directed to a system and method for coordinated
stage automation. In particular, embodiments of the present
disclosure are directed to a stage automation system which
is configured to unite actionable mechanisms (e.g., mechani-
cal devices) manufactured by varying manufacturers (and
therefore operated on varying software/executing programs)
under a common communication umbrella. Additional
embodiments of the present disclosure are directed to a
method of controlling a stage automation system including
a plurality of motion devices operating on varying executing
programs.

It is contemplated herein that embodiments of the present
disclosure may facilitate the efficient communication and
cooperation of varying actionable mechanisms within a
stage automation system. By communicating with each
actionable mechanism and executing program within a stage
automation system with a common communication protocol,
embodiments of the present disclosure may enable highly
coordinated and scalable stage automation systems.

The following descriptions may recite the following terms
which may include, but are not limited to, the following
characteristics:

Physics engine. A physics engine may include software
that may run on a CPU, GPU, or dedicated FPGA/
ASIC that simulates how real-world objects react to
physical forces. Most physics engines can calculate
how objects will move with gravity, attached con-
straints (like ropes, pistons, joints, etc.), applied forces,
friction, and collisions with other 3D objects.

Constraint. For most of this description, this will be
describing a linear constraint that may be attached to a
3D object. In most situations, this will be ropes or
chains from winches or chain motors hooked to a flown
object. Essentially, this is a machine that controls how
far a reference point associated with the flown object is
moved away from a given position either by lifting it up
(e.g., via a winch), or by pushing it (e.g., with a piston).

Vector3. This is 3 numeric values that describe a 3D
position in space (e.g. an x/y/z position), or 3 values
that make up an orientation described by Euler angles.
Given two Vector3 positions and the time between
them, we can calculate a 3D velocity which is also
represented by a Vector3. For instance, if position 1 is
[0,0,0] meters, position 2 is [1, 4, 10] meters, and the
time between those samples is 2 seconds, we know that
the velocity is [0.5, 2, 5]/second.

Euler angles. Angles in the X, Y, & Z planes, respectively.

Quaternion. A mathematical representation of the rotation
or orientation of a 3D object that is far more complex
and complete than Euler angles. It may be used for
transitioning smoothly between two orientations in an
animation.

Axis & axes. In stage automation and industrial automa-
tion, a machine that creates motion is commonly called
an “axis” or “axis of motion.” In geometry, a direction
for position or orientation like X, Y, or Z, is also
generally also called an “axis,” confusingly. For clarity
in this document, a machine that creates motion (like a
chain motor or hydraulic piston) is referred to as an

US 11,774,933 B2

5

“actuator,” so any usage of the term “axis” will refer to
a geometric direction like position or Euler angles X, Y,
or Z.

Limits. Limits are values that restrict how a machine
operates. In stage automation, an actuator may have
limits for maximum velocity, acceleration, and mini-
mun/maximum position. This keeps the actuator from
applying too much force, from going to fast, or from
colliding with other objects in the space. Additionally,
a 3D object may have separately-set limits on its
position, velocity, and speed as calculated in 3D space.
In the stage automation system, an object’s velocity
and acceleration at any given moment may be calcu-
lated as a length of a Vector3; that is, its velocity is
calculated by its movement overall, not by individual
X.,Y,7Z axes. A 3D object may also be functionally
limited by the actuator’s individual limitations, which
may or may not be more constrictive than the limits set
for the 3D object itself. If a 3D object tries to go faster
than the actuators can actually move it in any given
moment, the stage automation system may adjust down
the overall velocity of the move at that moment to the
maximum percentage of the requested move it can
accomplish.

FIG. 1 illustrates a simplified block diagram of a stage
automation system 100, in accordance with one or more
embodiments of the present disclosure. The stage automa-
tion system 100 may include, but is not limited to, one or
more actionable assemblies 102, one or more actionable
mechanisms 104, one or more executing programs 106, a
stage automation server 108, and a user interface 114.

In one embodiment, the stage automation system 100 may
be used in the context of live performances in order to
implement hardware and software-agnostic automation. For
example, the stage automation system 100 may be utilized
to control hardware (e.g., actionable assemblies 102, action-
able mechanisms 104) in the context of concerts, plays,
sporting events, and the like. In embodiments, each imple-
mentation of the stage automation system 100 may be
defined/described as an “environment,” such that the stage
automation assembly 100 implemented in the context of a
first concert is identified by a first environment, and the stage
automation assembly 100 implemented in the context of a
second concert is identified by a second environment. In
embodiments, an environment may include at least a stage
automation server 108 and one or more executing programs
106. An environment may be defined by a unique UUID, a
date and time the respective environment was initialized,
and a running clock in seconds from when the environment
was initialized. Data associated with each environment may
be stored in a memory 112 of the stage automation server
108. An environment may be further defined by a UUID of
a configuration file which set up the particular environment.
Generally, as it is used herein, the term “environment” may
be regarded as an individual “session” of the stage automa-
tion system 100.

The stage automation server 108 may include a local
server/controller and/or a remote server/controller. For
example, each environment may include a local server/
controller which controls and stores data associated with the
environment throughout the respective performance or
event. Following the conclusion of the performance/event,
the local server/controller (e.g., local stage automation
server 108) may be communicatively coupled to a remote
server/controller (e.g., cloud-based stage automation server
108) such that data associated with the environment may be
uploaded and stored in a centralized, cloud-based server

20

25

30

35

40

45

50

55

60

65

6

(e.g., cloud-based stage automation server 108). It is noted
herein that synchronizing local servers/controllers with a
centralized, cloud-based server (e.g., cloud-based stage
automation server 108) may enable troubleshooting known
issues, analysis to tune component issues, and machine
learning analysis to generate predictive models around
operators and various components.

In embodiments, the stage assembly system 100 may
include one or more executing programs 106a, 1065 (e.g.,
“instances”) communicatively coupled to the stage automa-
tion server 108. The one or more executing programs 106a,
1065 may be communicatively coupled with the stage
automation server 108 and/or other executing programs
106a, 1065 via any network protocol known in the art. For
example, the network protocol utilized by the stage auto-
mation system 100 may include, but is not limited to, a
transmission control protocol (TCP) or internet protocol (IP)
network (e.g., ethernet, WiF1i), a serial or bus-style network
(e.g., RS-485), and the like. By way of another example, the
network protocol may include a socketless user datagram
protocol (UDP). In embodiments, communicative connec-
tions established between components of the stage automa-
tion system 100 (e.g., executing program 106a, 1065, stage
automation server 108, and the like) are performed via the
establishment of asymmetric and then symmetric encryp-
tion, such as datagram transport layer security (DTLS),
transport layer security (TLS), and the like.

The one or more executing programs 106a, 1065 may
include software and/or code programs which are configured
to control one or more actionable mechanisms 104 (e.g.,
devices). In embodiments, each executing software may be
uniquely identified by a UUID, a UUID of the environment
it exists within, and an internet protocol (IP) address. As
noted previously herein, hardware and industrial mecha-
nisms produced by various manufacturers may be run/
controlled by varying software programs. In this regard, a
first executing program 106a may include a software and
code base of a first manufacturer executed on a first set of
computers (e.g., servers, virtual machines, graphical user
interfaces (GUI)), and a second executing program 1065
may include a software and code base of a second manu-
facturer executed on a second set of computers. Each
executing program 106a, 1065 may include an individual
runtime configuration. For example, the first executing pro-
gram 106a may include a first software program with a first
configuration and the second executing program 1065 may
include a second software program with a second configu-
ration.

In embodiments, each executing program 106 is config-
ured to selectively control one or more actionable mecha-
nisms 104a-104% (e.g., “axis” or “axes”). The one or more
actionable mechanisms 1044-104» may be communicatively
coupled to the respective executing programs 106a-106% via
any wireline or wireless communication protocol known in
the art (e.g., TCP network, serial connection, and the like).
The one or more actionable mechanisms 104a¢-1047z may
include any machinery or industrial motion controlling
device known in the art including, but not limited to, a servo
drive, a motor, a linear motor, a brake, a valve, an encoder,
a solenoid, a light, a power source, and the like. For instance,
an actionable mechanism 104a¢ may include a Control Tech-
niques M700 or a Kollmorgen AKD.

In embodiments, the one or more actionable mechanisms
104a-104n are configured to selectively control one or more
characteristics of one or more actionable assemblies 102a-
102x. In this regard, actionable assemblies 1024-1027 may
be regarded as the physical “thing” or “device” which gets

US 11,774,933 B2

7

moved, and the actionable mechanisms 104 may be regarded
as the “controller” or means through which the actionable
assemblies 102a-1027 are moved. For example, the one or
more actionable assemblies 102a-1027 may include, but are
not limited to, a stage elevator, a lineset, a screen track, a
chain motor, a winch, a turntable, and the like. Operational
characteristics of the actionable assemblies 102a-102n
which may be selectively controlled by the actionable
mechanisms 104a-104» may include, but are not limited to,
a position/location, velocity, acceleration, deceleration,
operational state (e.g., “active/on,” “inactive/off”), voltage,
wattage, current, fault state, and the like.

It is noted herein that each actionable assembly 102a-
102r and/or actionable mechanism 104a-104z may be
described as existing within three-dimensional (3D) space of
a particular environment of the stage automation system
100. 3D positional data of various actionable assemblies
102a-1027 and/or actionable mechanisms 104a-104z may
be defined by (X, v, z) coordinates. Rotational data may be
defined, transmitted, and stored within the stage automation
system 100 as quaternions, and presented to users as Euler
(X, y, z) values. For simplicity throughout the present
disclosure, the position (0, 0, 0) may be defined as down-
stage center of a particular venue or location within which
an environment of the stage automation system 100 is
employed. In a similar manner, for the purposes of simplic-
ity, upstage may correspond to positive z-values, elevations
above a ground/floor may correspond to positive y-values,
and stage left may correspond to positive x-values. It is
further noted, however, that positional data may be shown
and described in any manner known in the art and defined in
relation to any frame of reference.

In embodiments, the stage automation server 108 may
include one or more processors 110 and a memory 112, the
one or more processors 110 configured to execute a set of
program instructions stored in memory 112, the set of
program instructions configured to cause the one or more
processors 110 to carry out various steps of the present
disclosure. For example, the one or more processors 110 of
the stage automation server 108 may be configured to:
receive, from a first executing program 1064, a distributed
program object announcement including a set of one or more
time-stamped variables associated with a first actionable
mechanism 104a; generate a distributed program object
associated with the first actionable mechanism 104a, the
distributed program object including the set of one or more
time-stamped variables; transmit the distributed program
object to at least a second executing program 1065; receive
one or more data packets from the second executing pro-
gram 1065; adjust at least one time-stamped variable of the
distributed program object stored in memory 112 based on
the one or more received data packets; and transmit one or
more data packets to the first executing program 106a. Each
of these steps will be addressed in turn.

In embodiments, the stage automation server 108 may be
configured to receive, from a first executing program 106a,
a distributed program object announcement (e.g., “XaOb-
ject,” “XaValuesAnnouncement™) including a set of one or
more time-stamped variables (e.g., “XaValues™) associated
with a first actionable mechanism 104a. For example, a first
executing program 106a associated with a first actionable
mechanism 104a may transmit a distributed program object
announcement including a set of one or more time-stamped
variables associated with the first actionable mechanism
104a.

Distributing program objects (e.g., “XaObjects”) may
include objects which read, log, and command functionality

—

5

20

25

30

35

40

45

50

55

60

65

8

within the stage automation system 100. Each executing
program 106a may transmit a distributed program object
announcement associated with each respective actionable
mechanism 104a-1047 indicating that the respective action-
able mechanism 104a-104» exist within the environment. A
distributed program object may include any number of
time-stamped variables associated with a component (e.g.,
actionable mechanism 104a), cue, or command of the stage
automation system 100.

As it is used herein, “distributed program object
announcements” may be regarded as initial “announcement”
data packets of data which are transmitted by a particular
component in order to announce the component’s existence
within a particular environment. More specifically, a dis-
tributed program object announcement (e.g., announcement
data packet) may announce to other components of the stage
automation system one or more time-stamped variables
which the particular executing program 106 and/or action-
able mechanism has to publish, or wishes to consume. An
announcement data packet may include a list of universally
unique identifiers (UUIDs) the sending component includes,
and definitions for each UUID. A “definition” within an
announcement data packet may be composed of the follow-
ing byte string illustrated in Table 1. The number of defi-
nition byte arrays which may be included within a single
announcement data packet may be dependent upon the
maximum transmission unit (MTU) and maximum packet
length of the stage automation system 100.

TABLE 1

“Definition” Byte Array Structure of Announcement Data Packet

Starting
Byte Bytes Type Content
0 16 UUID Time-stamped variable UUID
16 16 UUID Sending component UUID
32 1 Byte Value Value Type enum for the time-stamped
Type variable (e.g., bool, float, double,
string, bytes, GeometryPoint)
33 1 Byte BaseUnit BaseUnit enum for the
time-stamped variable
34 1 Byte Variable Variable Mode for the time-stamped
Mode variable (e.g., publish, subscribe,
omni-publish)
35 1 Reserved for future use

The one or more time-stamped variables associated with
the first actionable mechanism 104¢ may include variables
associated with any characteristics (e.g., operational char-
acteristics) of the first actionable mechanism 104¢ includ-
ing, but not limited to, a position of the first actionable
mechanism 104¢ at a point in time, a velocity of the first
actionable mechanism 104a at a point in time, a brake
engagement status of the first actionable mechanism 104q at
a point in time, a connection status of the first actionable
mechanism 104q at a point in time, a command or cue
associated with the first actionable mechanism 1044 at a
point in time, and the like. By way of another example,
time-stamped variables may define other characteristics of a
particular component including, but not limited to, start/
initiation time, network lag, commands, target position/
velocity/acceleration, velocity clamp, position clamp, order
in a cue sheet, and the like. The one or more time-stamped
variables may include a UUID defining the time-stamped
variable, a UUID of the component (e.g., actionable mecha-
nism 104a) with which the value is associated, a unit of
measurement, and time-stamps indicating when each time-
stamped variable was captured.

US 11,774,933 B2

9

In embodiments, each distributed program object (e.g.,
distributed program object announcement) may include a set
of one or more value types (e.g., “XaValueType”) defining
types of values associated with each time-stamped variable.
In this regard, each time-stamped variable of a distributed
program object may be defined by a value type. Value types
may include, but are not limited to, a Boolean value type
(true/false), a long integer value type (numeric), a double
float value type (numeric), a string value type (text), a byte
array value type (data), and the like. For example, a time-
stamped variable defining a DC bus voltage feedback of an
actionable mechanism 104 may be defined by a value type
of a double float value type (e.g., “322.12 V). By way of
another example, a time-stamped variable defining a status
of a brake (e.g., actionable mechanism 104) may be defined
by a Boolean value type (e.g., “true” for open, or “false” for
closed). By way of another example, a time-stamped vari-
able defining raw encoder feedback from a machine (e.g.,
actionable mechanism 104) may be defined by a long integer
value type (e.g., “103923”). By way of another example, a
time-stamped variable may define a make and/or model
reported by a drive (e.g., actionable mechanism 104) as a
string value type (e.g., “Kollmorgen AKD-TBANO0607”).
By way of another example, a time-stamped variable defin-
ing a UUID of a drive (e.g., actionable mechanism 104) may
be defined by a byte array value type in hex (e.g.,
“2bd21b25b76849288{bed9874b6102877).

In embodiments, each distributed program object (e.g.,
distributed program object announcement) may include a set
of one or more variable modes defining various modes
associated with each time-stamped variable. In this regard,
each time-stamped variable of a distributed program object
may be defined by a variable mode. Variable modes asso-
ciated with each time-stamped variable may define how
other components within the stage automation system 100
may view and/or interact with each respective time-stamped
variable. Variable modes may include, but are not limited to,
a “publish” variable mode, a “subscribe” variable mode, and
an “omni-publish” variable mode.

For example, a publish variable mode indicates that the
component associated with the time-stamped variable is the
only component which may adjust/update the value. For
instance, if an actionable mechanism 104 include a time-
stamped variable indicative of current consumption for the
actionable mechanism 104 with a publish variable mode,
only the actionable mechanism 104 itself may adjust/update
the time-stamped variable, with other components being
unable to do so. By way of another example, a subscribe
variable mode indicates that components which depend on
the time-stamped variable (e.g., “subscribe” to the time-
stamped variable) may receive published updates when the
time-stamped variable is updated. For instance, if a second
executing program 1065 subscribes to a time-stamped vari-
able with a subscribe value type of the first executing
program 1064, the stage automation server 108 may transmit
data packets/distributed program objects to the second
executing program 106a each time the time-stamped vari-
able is updated. Components may subscribe or not subscribe
to other distributed program objects and/or individual time-
stamped variables based on their relevance to their own
operations. By way of another example, an omni-publish
variable mode indicates that a plurality of components may
adjust/update the value, and published updates are sent to
subscribed components. For instance, a brake (e.g., action-
able mechanism 104) may include a time-stamped variable
indicative of operational status (e.g., on/off) with an omni-
publish variable mode such that any component within the

20

25

30

35

40

45

50

55

60

65

10

stage assembly system 100 may adjust/update the opera-
tional status of the brake (e.g., turn it on or off).

As noted previously herein, an announcement data packet
(e.g., distributed program object announcement data packet)
transmitted by an executing program 106 may include one or
more time-stamped variables which the particular executing
program 106 and/or actionable mechanism has to publish, or
wishes to consume. For example, an announcement data
packet transmitted by the first executing program 106a may
include definitions for a first distributed program object
associated with the first actionable mechanism 104a, a
second distributed program object associated with the sec-
ond actionable mechanism 10454, a third distributed program
object associated with the third actionable mechanism 104c¢,
a fourth distributed program object associated with the
actionable assembly 1024, and the like. Announcement data
packets may describe the type of each component (e.g.,
actionable mechanism 104, actionable assembly 102), which
time-stamped variables are associated with each respective
distributed program object, and a value type of each time-
stamped variable. For example, an announcement data
packet is shown in further detail in Table 2 below:

TABLE 2

Announcement Data Packet Structure

Starting
Byte Bytes Type Content
0 16 UUID Distributed program object UUID
16 16 UUID Host executing program UUID
32 2 Unit Value type enum for the
XaObjectType distributed program object’s type
on the host executing program
34 2 Unit Value type enum for how the
XaObjectType distributed program object should
be represented on the receiving
executing program.
36 10 — Reserved for future use
46 2 ushort Number of time-stamped variables
that will be described.
48 16 UUID Time-stamped variable UUID for
Value 1
64 2 ushort Number of following bytes that
create the key string for Value 1
(in this example, 27)
66 27 UTF-16string Key name for the time-stamped
variable in the distributed program
object for Value 1
93 16 UUID Time-stamped variable UUID for
Value 2
109 2 ushort Number of following bytes that
create the key string for Value 2
(in this example, 491)
111 491 UTF-16string Key name for the time-stamped

variable in the distributed
program object for Value 2

As shown in the table above, it is noted herein that
time-stamped variables with string value type may include
text encoded with UTF-16 such that the number of bytes for
each time-stamped variable key may be more than the
number of text characters.

In embodiments, the stage automation server 108 is
configured to generate a distributed program object associ-
ated with the first actionable mechanism 104a, the distrib-
uted program object including the set of one or more
time-stamped variables. In this regard, the stage automation
server 108 may be configured to generate and/or store the
distributed program object received from the first actionable
mechanism 104a in memory 112. Accordingly, time-
stamped variables associated with actionable mechanism

US 11,774,933 B2

11

104a (e.g., position, velocity, operational status) may be
stored in memory 112. Additionally, in some embodiments,
executing programs 106a-1065 may transmit distributed
program objects including sets of time-stamped variables
and/or individual time-stamped variables at regular and/or
irregular intervals. For example, the first executing program
106a may be configured to transmit a distributed program
object including a set of time-stamped variables associated
with actionable mechanism 1044 every ten milliseconds (10
ms). In this regard, time-stamped variables associated with
actionable mechanism 104qa (e.g., position, velocity, opera-
tional status) may be updated and stored in memory 112
every ten milliseconds. The memory 112 may be configured
to store all time-stamped variables associated with each
component of the stage automation system 100 throughout
the existence of an environment such that historical values
throughout the environment may be easily searched and
retrieved.

In the context of components (e.g., actionable assembly
102, actionable mechanism 104, executing program 106,
stage automation server 108) which subscribe to one or more
time-stamped variables of other components, the subscrib-
ing components may store time-stamped variables of the
subscribing instances in memory. In this regard, components
may store their own time-stamped variables, as well as
time-stamped variables to which they are subscribed. Com-
ponents may additionally be configured to transmit request
packets via the network protocol in order to request specific
time-stamped variables of other components from the stage
automation server 108. In additional embodiments, compo-
nents of the stage assembly system 100 may be configured
to sync recorded/stored time-stamped variables with those
recorded/stored in the memory 112 of the stage automation
server 108.

In embodiment, some components may “depend” on other
components or time-stamped variables such that the actions
of a first component “depend” on a time-stamped variable of
a second component. In this example, the time-stamped
variable of the second component may be said to be “criti-
cal” to the first component. By subscribing to critical time-
stamped variables of other components, the stage automa-
tion system 100 may enable a distributed, interconnected
network of components with built-in fault states and com-
mands for coordinated motion. Furthermore, as will be
described in further detail herein, if the stage automation
server 108 and/or another component (e.g., executing pro-
gram 106, actionable mechanism 104, actionable assembly
102) is dependent on a critical packet, distributed program
object, or time-stamped variable of another critical compo-
nent within a predefined window (e.g., within a 20 ms
window), and the component does not receive the critical
packet, distributed program object, or time-stamped variable
within the predefined window, the component may be con-
figured to go into a fault state.

It is further noted herein that storing a complete (or
semi-complete) database of time-stamped variables gener-
ated by the environment throughout the duration of an event
may be particularly useful for troubleshooting. Currently,
stage automation systems do not store a complete set of data
throughout an event, such as a concert. Thus, when weird
anomalies occur during the concert (e.g., stage elevator goes
past height clamp, light strays from intended planned
course), these anomalies are difficult to troubleshoot, and
almost impossible to reproduce. By storing time-stamped
variables in a central stage automation server 108, embodi-
ments of the present disclosure may enable improved
troubleshooting and stage automation management.

20

25

30

35

40

45

50

55

60

65

12

It is noted herein that components within the stage auto-
mation system 100 may each include one or more processors
and memory. For example, each executing program 106a-
1067 may include one or more processors and memory, such
that each executing program 106a-106~ may be configured
to store time-stamped variables associated with coupled
components in memory. In this regard, time-stamped vari-
ables associated with a particular actionable mechanism 104
may be stored in a memory of a coupled executing program
106, the stage automation server 108, and the like. Similarly,
each component within the stage automation system 100
(e.g., stage automation server, executing program 106) may
include a message broker configured to transmit and/or
receive time-stamped variable updates and distributed pro-
gram objects throughout the stage automation system 100.

In embodiments, acknowledgement (ACK) and non-ac-
knowledgement (NACK) packets may be handled and trans-
mitted within the application layer of the stage automation
system 100 such that non-received data packets may be
identified by the UUID of the transmitting executing pro-
gram 106 and an unsigned long integer value for the
sequence number, and re-sent.

Data packets including distributed program objects and/or
time-stamped variables transmitted via the network protocol
of the stage automation system 100 may be used to monitor
network lag and to ensure runtime configurations (e.g.,
timecodes) of each executing program 106 are in sync with
that of the stage automation server 108. For example, upon
receiving a distributed program object from the first execut-
ing program 106, the stage automation server 108 may
transmit a data packet (ACK) including a timecode of the
stage automation server 108 such that the first executing
program 1064 may ensure its timecode is in sync with that
of the stage automation server 108.

In embodiments, the stage automation server 108 is
further configured to transmit the distributed program object
announcement received from the first executing program
106a to at least a second executing program 1065. In
embodiments, data packets (e.g., data packets of a distrib-
uted program object announcement) transmitted via the
network protocol of the stage automation server 108 perform
time-syncs when passed from one component to another in
order to judge network jitter and latency. For example, a
time synchronization protocol, such as simple network time
protocol (SNTP), a network time protocol (NTP), or a
precision time protocol (PTP) may be utilized by the stage
automation server 108 in order to keep internal clocks of
respective components in sync, and to monitor network
congestion. In some embodiments, all communication (e.g.,
transmitting/receiving data packets) within the stage auto-
mation system 100 is performed over two ports, thereby
simplifying network security management. In this regard, in
some embodiments, functionality within the stage automa-
tion system 100 may be conducted over two network ports,
instead of breaking different functions of the distributed
network protocol into different network ports for different
functions. For example, data packets may include byte
identifiers associated with a particular functional purpose
within the stage automation system 100 that the data packet
serves. Additionally, byte identifiers may facilitate efficient
decoding of the data packet.

It is contemplated herein that performing communication
within the stage automation system 100 over only two
network ports may provide a number of advantages. For
example, some conventional stage automation systems may
utilize a plurality of ports for different functions. For
example, a conventional stage automation system may uti-

US 11,774,933 B2

13

lize a 4321 port for one type of audio traffic, a 5004 port for
another type of audio traffic, 8700-8708 ports for control and
monitoring, 319 and 320 ports for time sync, as well as
additional ports. Comparatively, by utilizing two network
ports, the stage automation system 100 of the present
disclosure may allow components within the system to more
efficiently and effectively identify traffic originating within
the stage automation system 100, and set up firewall rules to
allow (or block) particular traffic.

In some embodiments, all data packets (e.g., data packets
of distributed program objects) transmitted throughout the
stage automation system 100 may include a common data
header. An example data header of data packets transmitted
throughout the network protocol of the stage automation
system 100 is further shown in Table 3 below. In embodi-
ments, values above the bolded dividing line may be trans-
mitted unencrypted, and fully repeated in the encrypted
packet. This may be done in order to validate that a received
packet is from another component within the environment
(e.g., another component with which the receiving compo-
nent has established a communicative coupling with). Addi-
tionally, transmitting unencrypted values and repeating
unencrypted values in the encrypted packet may further
serve to verity that the data packet received has not been

altered or corrupted following transmission.
TABLE 3
Data Packet Header
Starting
Byte Bytes Type Cast Content Section
0 2 String “XA” Short
2 1 Byte Packet Short
Type
3 1 Byte Com- Short
ponent
Type
4 1 Byte Version Short
5 3 n/a Reserved for future use Short
8 16 UUID Sending component’s Short
UUID
24 16 UUID Target component’s Short
UUID; left 0 for
announcement packets.
40 8 Double Sender component Long
timecode when packet
was sent (this gets
updated if the same
packet is re-sent
because of lack of
acknowledgement
from the receiving side)
48 8 Double Sender component Long
timecode at last
timecode received from
target component (also
gets updated on re-send)
56 8 Double Last timecode received Long
from target component
(gets updated on
re-send)
64 8 Ulong Packet index Long
72 8 na Reserved for future use Long

In some embodiments, all data packets (e.g., data packets
of distributed program objects) transmitted throughout the
stage automation system 100 may include the common short
data header, as shown above in Table 3. As noted previously
herein, the short header may always be transmitted unen-
crypted to enable debugging, coarse sanity checking before
attempting decryption, and to enable traffic shaping, if
necessary. Data packets transmitted via the network protocol

20

25

30

35

40

45

50

55

60

65

14

throughout the stage automation system 100 may be further
shown and described with reference to FIGS. 2A-2C.

FIG. 2A illustrates an announcement data packet 202a of
a stage automation system 100, in accordance with one or
more embodiments of the present disclosure. The announce-
ment data packet 202a may include, but is not limited to, a
short header 204 and a data payload 206a.

In order to establish communicative couplings between
various components (e.g., actionable assemblies 102, action-
able mechanisms 104, executing programs 106, stage auto-
mation server 108) a series of announcement and handshake
data packets may be exchanged between respective compo-
nents. For example, FIG. 2A illustrates an announcement
packet which may be transmitted from a first component
(e.g., “sending” component) to a second component (e.g.,
“receiving” or “target” component) in order to establish a
communicative coupling between the first and second com-
ponents. The announcement data packet 202a may be trans-
mitted and/or broadcast with a short header 202 and a data
payload 2064 such that one or more receiving/target com-
ponents may communicatively couple with the sending
component. In embodiments, the data payload 206a may
include an asymmetric public key (RSA) of the sending
component such that receiving components may securely
respond with an encrypted packet that only the sending
component may decrypt.

It is noted herein that various components may transmit/
receive data packets (e.g., data packets of distributed pro-
gram objects) between one another through the stage auto-
mation server 108. For example, a first executing program
106a may transmit data packets to the stage automation
server 108, which may then forward/transmit the data pack-
ets to a second executing program 1064. In additional and/or
alternative embodiments, components may transmit/receive
data packets directly between one another. For example, as
shown in FIG. 1, the first executing program 106a may
transmit data packets to directly to the second executing
program 1065.

FIG. 2B illustrates a first stage handshake data packet
2025 of a stage automation system 100, in accordance with
one or more embodiments of the present disclosure. The first
stage handshake data packet 2025 may include, but is not
limited to, a short header 204, a long header 208, and a data
payload 20654.

Once two components have received one another’s public
RSA keys, the two components may exchange first stage
handshake data packets 2025. As noted previously herein,
the short header 204 may be transmitted unencrypted, and
repeated fully in the encrypted portion of the data packet. In
embodiments, the data payload 2065 may include an AES
symmetric key of the sending component. In this regard,
exchanging first stage handshake data packets 20256 may
allow various components to securely handshake and
exchange AES symmetric keys with one another.

FIG. 2C illustrates a second stage handshake data packet
202c¢ of a stage automation system 100, in accordance with
one or more embodiments of the present disclosure. The
second stage handshake data packet 202¢ may include, but
is not limited to, a short header 204, a long header 208, and
a data payload 206c.

Once two components have received one another’s AES
symmetric keys, the two instances may transmit a series of
second stage handshake data packets 202¢. Second stage
handshake data packets 202¢ may be transmitted between
components in order to judge network latency and jitter
between the respective components. In embodiments, the
long header 208 may include timing information (e.g.,

US 11,774,933 B2

15

timecode or runtime configuration of sending component),
and may be included within all subsequent data packets in
order to continually monitor network latency and other
conditions/characteristics of the network protocol. After
AES symmetric keys have been exchanged and a commu-
nicative coupling has been established between components
of the stage automation system 100, data payloads 206¢
exchanged between the components may be trusted and
acted upon.

While FIGS. 2A-2C are shown and described in the
context of RSA/AES encryption algorithms, these are not to
be regarded as a limitation of the present disclosure, unless
noted otherwise herein. In this regard, the stage automation
system 100 may be configured to utilize any encryption
algorithms or schemes known in the art without departing
from the spirit and scope of the present disclosure.

In embodiments, a component may be configured to
transmit one or more update data packets (e.g., “XaValue-
sUpdate” data packets) when a value of one or more
time-stamped variables associated with the component is
adjusted or updated. For example, if a position of the
actionable mechanism 104¢ is updated, the first executing
program 106a may transmit one or more update data packets
to the stage automation server 108. The stage automation
server 108 may then be configured to forward the one or
more update packets to one or more additional executing
programs 1065-106r which subscribe/depend upon the
updated value. A database of components (e.g., executing
programs 106) which subscribe/depend on the updated value
may be stored in memory 112. In this example, the one or
more executing programs 106 may then update distributed
program objects associated with the updated time-stamped
variable based on the one or more received update packets.
Example update data packets which may be transmitted
throughout the stage automation system 100 via the network
protocol is shown in Table 4 and Table 5 below.

TABLE 4

Update Data Packet Structure

Starting Value
Byte Bytes Type Content
0 16 UUID Time-stamped variable UUID for
example Value 1
16 1 Byte Value type for Value 1. This is
redundant, since the receiving executing
program should know what value type
that time-stamped variable UUID is, but
this additionally helps reduce speed of
decoding and prevents accidental buffer
overruns that would cause the decoding
process to miss other valid data. For
this example, we’ll assume the value
type of Long, which is a signed integer
that is stored with 4 bytes per value
17 2 Ulntl6 Number of time-stamped variable slices
that are included after this
(e.g., 3 slices)
19 8 Double Slice 1: Timecode
27 8 Long Slice 1: Value
35 8 Double Slice 2: Timecode
43 8 Long Slice 2: Value
51 8 Double Slice 3: Timecode
59 8 Long Slice 3: Value
67 16 UUID Value type UUID for example Value 2
83 1 Byte Value type for Value 2
84 2 Ulntl6 Number of time-stamped variable slices
that are included after this (e.g., 3 slices)
86 8 Double Slice 1: Timecode
94 8 Long Slice 1: Value
102 8 Double Slice 2: Timecode

10

15

20

25

30

35

40

45

50

55

60

65

16
TABLE 4-continued

Update Data Packet Structure

Starting Value
Byte Bytes Type Content
110 8 Long Slice 2: Value
118 8 Double Slice 3: Timecode
126 8 Long Slice 3: Value
TABLE 5
Update Data Packet Structure
Starting
Byte Bytes Value Type Content
0 16 UUID Time-stamped variable UUID for
example Value 1
16 1 Byte Value Type (e.g., String)
17 2 Ulntl6 Number of time-stamped variable
slices that are included after this
(e.g., 3 slices)
19 8 Double Slice 1: Timecode
27 2 Ulntl6 Slice 1: Value
29 17 Byte Slice 2: Timecode
46 8 Double Slice 2: Value
54 2 Ulntl6 Slice 3: Timecode
56 635 Byte Slice 3: Value
691 16 UUID Time-stamped variable UUID for
example Value 1
707 1 Byte Value Type (e.g., Bool)
708 2 Ulntl6 Number of time-stamped variable
slices that are included after this
(e.g., 3 slices)
710 8 Double Slice 1: Timecode
718 1 Bool Slice 1: Value
719 8 Double Slice 2: Timecode
727 1 Bool Slice 2: Value
728 8 Double Slice 3: Timecode
736 1 Bool Slice 3: Value

In particular, Table 4 illustrates an update data packet
storing multiple time-stamped variable slices (e.g., multiple
time-stamped variables for various points in time) for two
time-stamped variables including long integer value types,
and Table 5 illustrates an update data packet storing multiple
time-stamped variable slices for two time-stamped variables
including a string value type and a bool value type.

It is noted herein that transmitting update data packets
throughout the stage automation system 100 upon updating
a time-stamped variable may allow each component of the
system to maintain up-to-date information regarding other
components, such as a location, velocity, operational status,
and the like. It is further noted herein that the size of update
data packets may be limited to the maximum transmission
unit (MTU) of the network, less the known length of the
short header 204 used throughout the stage automation
system 100. Once a byte count of the data payload of an
update data packet (or other data packet) reaches a maxi-
mum length, the respective data packet may be transmitted,
and a new data packet including remaining bytes to be
transmitted may be constructed.

FIGS. 3A-3C illustrate a conceptual diagram of a time-
stamped variable with a publish variable mode and a time-
stamped variable with an omni-publish variable mode, in
accordance with one or more embodiments of the present
disclosure. In particular, FIGS. 3A-3C illustrate a first
component (Component 1) subscribing to a first time-
stamped variable of a second component (Component 2),
and updating a second time-stamped variable of the second
component (Component 2).

US 11,774,933 B2

17

For example, as shown in FIG. 3A, a second component
(Component 2) (e.g., actionable mechanism 1044, executing
program 1065) may transmit a distributed program object
announcement to the stage automation server 108 including
a first time-stamped variable with a publish variable mode
and a second time-stamped variable with an omni-publish
variable mode. The stage automation server 108 may receive
the distributed program announcement, and generate/store
the distributed program announcement of Component 2 in
memory. The distributed program object announcement may
only include the names of the time-stamped variables,
variable modes, and value types. Subsequently, Component
2 may transmit update data packets (e.g., updated time-
stamped variables) which include actual values for each
time-stamped variable. As shown in FIG. 3B, a first com-
ponent (Component 1) (e.g., user interface 114, actionable
mechanism 1044, executing program 1065) may subscribe
to the distributed program object of Component 2 such that
it may view the values of the time-stamped variables.
Subsequently, Component 2 may update the value of the
second time-stamped variable with an omni-publish variable
type, and transmit update data packets to Component 2,
thereby adjusting one or more characteristics of Component
2. Conversely, in FIG. 3A, Component 2 may update the first
time-stamped variable, and update data packets may be
transmitted to Component 1 reflecting the change.

In embodiments, one or more executing programs 1065-
1067 may receive one or more data packets from the second
executing program 1065. In additional embodiments, one or
more executing programs 106a-106» may be configured to
adjust one or more time-stamped variables with an omni-
publish value type. For example, the first executing program
106a may include a motor as a first actionable mechanism
104a. The motor may include a distributed program object
including a time-stamped variable indicative of an output of
the motor, and the motor may be characterized by an
omni-publish value type such that other components of the
system may adjust/update the motor output. In this example,
a second executing program 1065 may subscribe to and/or
receive the distributed program object of the motor (e.g.,
first actionable mechanism 104q), adjust the time-stamped
variable indicative of motor output to a new output, and
transmit one or more data packets including the updated
distributed program object and/or updated time stamped
variable to the first executing program 106. The one or more
data packets may be configured to cause the first executing
program 1064 to adjust the time-stamped variable of the
motor (e.g., first actionable mechanism 104a) of the motor’s
distributed program object in response to the received data
packets. In this regard, the first executing program 106a is
configured to adjust one or more operational characteristics
(e.g., motor output) of the first actionable mechanism 104a
associated with the at least one adjusted time-stamped
variable.

Continuing with the same example above, upon receiving
the one or more data packets including the updated distrib-
uted program object and/or updated time stamped variable,
the stage automation server 108 may also be configured to
update the time-stamped variable of the motor stored in
memory 112 based on the received data packets which may
be forwarded to the first executing program 106a.

It is noted herein that selectively adjusting and controlling
characteristics of components within the stage automation
system 100 via distributed program objects may enable
much greater flexibility and robustness than is currently
possible using conventional systems.

20

25

30

35

40

45

50

55

60

65

18

An example may prove to be illustrative. consider a
conventional stage automation system which includes a first
microwave from Manufacturer A. In order to start the first
microwave, a user must select the “Cook” button, then select
the “Time Cook” button, enter a time, then press and hold a
“Start” button for two seconds. The conventional stage
automation system may further include a second microwave
from Manufacturer B. In order to start the second micro-
wave, a user must enter a time, select the “Cook™ button,
then press and release a “Start” button. In order to remotely
control the first and second microwaves via a server/con-
troller, the server/controller would have to be programmed
specifically for Manufacturer A and Manufacturer B sepa-
rately such that it performs the right steps, in the right order,
in the right format, and the like. This specific programming
would be individualized on a manufacturer and product
basis. Such bespoke programming may be tedious and time
consuming, which leads to a lack of compatibility and
communication between components of the conventional
stage automation system.

Comparatively, consider the same example with the first
and second microwaves in the context of the stage automa-
tion system 100. Upon introduction into the environment of
the stage automation system 100, each microwave may
generate and transmit a distributed program object
announcement. The distributed program object of each
microwave may include a time-stamped variable with value
type string indicating the type/name of the microwave (e.g.,
“CookMeister500Microwave,”
“GEJES1072SHMicrowave”) which will be unique to each
microwave. Additionally, the distributed program object of
each microwave may allow other components update the
cook timer (e.g., time-stamped variable, double, publish),
may publish the operational state (on/off) of the respective
microwave (e.g., time-stamped variable, boolean, publish),
publish the internal temperature (e.g., time-stamped vari-
able, double, publish), and allow other components to turn
on the microwave (e.g., time-stamped variable, boolean,
omni-publish). Upon receiving the distributed program
object of the respective microwaves, interested/dependent
components may save/generate the distributed program
object which will listen/view to the temperature of the
microwaves, and listen/view in order to update/adjust the
cook timer and on/off status. For instance, in order to turn on
either microwave, all another component would have to do
is update the time-stamped variables associated with the
cook timer and on/off status and transmit update data packets
including an updated distributed program object to the
respective microwave. Each respective microwave may then
be configured to receive the updated distributed program
objects, and adjectively alter the cook time and on/off status
of the microwave based on the updated distributed program
object and the manufacturer

As illustrated in the example above, controlling/adjusting
characteristics of components within the stage automation
system 100 via distributed program objects may enable
much greater flexibility. In particular, distributed program
objects may render manufacturer-specific processes and
instructions to be generic for all components/machines of a
particular type. For instance, updating an on/off status via a
distributed program object may be similar for all micro-
waves, no matter the manufacturer or manufacturer-specific
program instructions. In other words, the stage automation
system 100 may utilize generic updates to distributed pro-
gram objects to implement manufacturer-specific program-
ming. Controlling a component within the stage automation
system 100 therefore focuses on the type of the component

US 11,774,933 B2

19

(as defined by its distributed program object), and not the
manufacturer or individual machinery associated with the
component. In this regard, embodiments of the present
disclosure may enable a stage assembly system 100 which is
hardware and protocol agnostic.

By way of another example, the processes used to release
the brake and trigger a velocity change in a Nidec M750
servo drive is very different from that of a Kollmorgen
AKD-BASIC servo drive. Distributed program objects
would include names (value type string) indicating the
different servo drives. However, the distributed program
objects of both servo drives would include similar and/or
identical time-stamped variables (e.g., on/off status, voltage,
current, output), making the distributed program objects of
each specific servo drive appear to be a generic distributed
program object for any servo drive (minus the name within
each distributed program object)

It is further noted herein that allowing components of the
stage automation system 100 to selectively adjust charac-
teristics of other components within the environment of the
stage automation system 100 may enable increasingly auto-
mated events and performances (e.g., concerts, plays, and
the like). For example, during a concert, three separate
actionable mechanisms 104a-104¢ may be required to per-
form their designated actions before a fourth actionable
mechanism 104d is to be activated to perform its designated
actions. In this example, upon performing its designated
actions (e.g., actuating to correct location, producing light,
etc.), the first actionable mechanism 104¢ may update a
distributed program object of the second actionable mecha-
nism 1045, causing the second actionable mechanism 1045
to perform its designated actions. Upon performing its
designated actions (e.g., actuating to correct location, pro-
ducing light, etc.), the second actionable mechanism 1045
may update distributed program objects of the third and
fourth actionable mechanisms 104¢-1044, causing the third
and fourth actionable mechanisms 104¢-104d to perform
their designated actions.

In embodiments, updates to time-stamped variables and/
or distributed program objects are written in real-world
units, such that the position, velocity, acceleration, and the
like, of each component of the stage automation system 100
is known with respect to 3D space. As noted previously,
positional information (e.g., position, velocity, acceleration,
deceleration, position clamps, and the like) may be selected
and stored within the system with respect to a defined
reference point.

In some embodiments, actions performed within the stage
automation system 100 may be limited or controlled by
“conditions.” The term conditions may be used to refer to
logic statements which limit actions and/or cause certain
actions to occur within an environment. For example, a
condition may state that if a certain time-stamped variable or
statement of time-stamped variable comparisons is true,
limit the velocity of actionable assembly 102a to 1 m/s. By
way of another example, a condition may be configured to
fire a command (e.g., update a time-stamped variable to
initiate an action) on the rising edge of a certain time-
stamped variable. In embodiments, a database of conditions
associated with an environment may be stored in memory
112 of the stage automation server 108 and/or memory of
components within the stage automation system 100.

In some embodiments, a show or event (e.g., concert,
play, sporting event) may be programmed in terms of cue
sheets, cues, and commands. A cue sheet may be stored in
memory 112, wherein the cue sheet includes a list of one or
more cues and/or commands. A command may be used to

20

25

30

35

40

45

50

55

60

65

20

refer to an action which an actionable mechanism 104 and/or
actionable assembly 102 may take. For example, commands
may include “move to x position,” “sync position with
another actionable mechanism 104 and/or actionable assem-
bly 102,” move to x velocity and hold x velocity,” move
along a predefined series of positions or velocities,” “follow
the position value passed via Open Sound Control (OSC) or
Art-Net,” “wait x seconds, then move to y position,” and the
like. A cue may be used to refer to multiple actions which are
executed on one or more actionable mechanisms 104 and/or
actionable assemblies 102. Thus, a cue may refer to a group
of one or more commands.

In practice, a memory 112 of the stage automation server
108 may be configured to store a cue sheet including a
plurality of cues and/or commands, often the cues/com-
mands for an entire show. For example, the stage automation
server 108 may be configured to store a cue sheet in memory,
wherein the cue sheet includes a first command executable
by the first actionable mechanism 104q, and a second
command executable by the second actionable mechanism
1045. Cues and commands may be linked to the particular
component (e.g., actionable assembly 102, actionable
mechanism 104, executing program 106) configured to
execute them based on the UUID of the respective compo-
nent.

For instance, the stage automation server 108 may be
configured to transmit one or more data packets associated
with a first command to the first executing program 106a,
wherein the first executing program 106a is configured to
adjust at least one time-stamped variable of a first actuatable
mechanism 104« in order to execute the first command. The
stage automation server 108 may be further configured to
transmit one or more data packets associated with the second
command to the second executing program 1065, wherein
the second executing program 1065 is configured to adjust
at least one time-stamped variable of the second actuatable
mechanism 1044 in order to execute the second command.

The stage automation server 108 may include a “Cue-
Manager.” The CueManager may include a module or a set
of program instructions executable by the one or more
processors 110. The CueManager may be configured to hold
commands which are currently running in a position denoted
“CommandExecutor,” and commands which are to be run
subsequently in a position denoted “CommandStandby.” To
initiate a cue or command, the CueManager may receive a
UUID of an existing cue or command. The CueManager
may then make a copy of the cue/command, and put its
contents into CommandStandby position. For each execut-
ing program 106 in the environment, the CueManager may
be configured to take the first cue/command in the Com-
mandStandby position and move it to the CommandExecu-
tor position in order to initiate/execute the cue/command on
its intended executing program. Once the cue/command in
the CommandExecutor position completes, the CueManager
may remove it from the CommandExecutor position, and
move the next cue/command (if any) from the Command-
Standby position in to the CueExecutor position.

In embodiments, some cues/commands may keep a com-
ponent (e.g., executing program 106, actionable mechanism
104, actionable assembly 102) active until certain criteria or
conditions are met. For example, a command may keep a
component active until a timer has expired, a position of
another component is met, or a particular time-stamped
variable reaches a particular value. In this regard, the Cue-
Manager (e.g., stage automation server 108) may not deac-
tivate a command in the CommandExecutor position until
the command is complete. In other embodiments, some

US 11,774,933 B2

21

components may be put into a fixture mode to be controlled
by a lighting console or other external control. For example,
some components may be put into a fixture mode such that
they are controlled via the user interface 114. Commands in
a fixture mode may stay active until they are manually
cleared. The stage automation server 108 of the environment
may listen to the Art-Net/Streaming Architecture of Control
Networks (SACN) universe/multiverse for transporting
frames in the DMX universe/multiverse, and can make
executing programs 106 respond to live commands to chase
a position command from Art-Net. Each executing program
106 may include a starting address in the DMX multiverse
and the OSC namespace.

As shown in FIG. 1, the stage automation system 100 may
further include a user interface 114. The user interface 114
may include a user input device 1167 and a display device
118. The user interface 114 may include any user interface
device known in the art including, but not limited to, a
desktop computer, a laptop, a mobile device (e.g., smart-
phone, tablet), a wearable device, and the like. The display
device 118 may be configured to display data/information of
the stage automation system 100 to a user. In this regard, a
user may be able to view characteristics of components
within the stage automation system 100 (e.g., distributed
program objects, time-stamped variables for position, veloc-
ity, operational state, and the like) via the user interface 114.

In embodiments, the user input device 116 may be con-
figured to receive one or more input commands from a user
responsive to data shown on the display device 118. For
example, a user may be able to input various commands,
conditions, and the like, via the user interface 114. By way
of another example, a user may be able to run components
(e.g., actionable assemblies 102, actionable mechanisms
104) of the stage automation system 100 in a “jog mode.”
The term “jog” may be used to refer to user-controlled
actions (e.g., user-input position, user-input velocity, user-
input command to move forward or backwards). For
example, an executing program 106 may be run in a jog
mode, live-chasing either a position, velocity, or torque
target with minimum/maximum position clamps, velocity
clamps, and acceleration clamps set by settings of the
executing program 106, parameters associated with a com-
mand, or a defined condition. Actions of a particular com-
ponent may be limited to whichever parameters (e.g.,
executing program 106 settings, parameters associated with
a command, a defined condition) are most restrictive.

For instance, the stage automation server 108 may be
configured to receive one or more input commands (e.g.,
data packets) from a user interface 114, and adjust at least
one time-stamped variables of a set of one or more time-
stamped variables of a distributed program object stored in
memory 112 based on the one or more input commands
received from the user interface 114. Subsequently, the stage
automation server 108 may be configured to transmit one or
more update data packets to the component associated with
the updated distributed program object in order to imple-
ment the action, command, or condition based on the
received input commands.

In some embodiments, the stage automation system 100
may implement the DMX multiverse which receives data in
and transmits data out to a DMX, Art-Net, and/or RDM
network. The DMX multiverse may also contain configu-
ration linking UUIDs of various executing programs 106 to
starting addresses and fixture styles in the multiverse, a
configuration that is static and persistent in the configuration
of the environment. In embodiments, an executing program
106 of an environment of the stage automation system 100

20

25

30

35

40

45

50

55

60

65

22

may be configured to listen to a DMX512 source (e.g.,
RS-485, DMX512, Art-Net, DMX over sACN), and trans-
mit the universe values as data packets over the network
protocol to the stage automation server 108. The universe
values may be timestamped with the time of capture (similar
to time-stamped variables), and marked with the UUID of
the physical device (e.g., RS-485, DMX512) or the Art-Net
universe the values originated from. The multiverse object
will by default consume any incoming DMX data from any
executing program 106 that has a DMX source configured
on it, and will broadcast out any DMX out from the
multiverse any DMX output configured in the environment,
either by DMX512 or a configured Art-Net/sACN network
endpoint.

In embodiments, the stage automation system 100 may be
configured to support OSC in and out of the environment of
the stage automation system 100. By default, the fixture
mode for OSC listens to a predefined address prefix for each
actionable assembly 102/actionable mechanism 104, and
transmits status on a predefined address prefix. The address
prefix can be the UUID of the actionable assembly 102/
actionable mechanism 104 or another name. In additional
embodiments, the stage automation system 100 may be
configured to support PosiStageNet input and output. By
default, the system will consume any PSN data on the
network and create and update single-point geometry object
for each unique tracker fount. It will also publish current
point data for all actionable assemblies 102/actionable
mechanisms 104 with known 3D positions to the network
protocol (e.g., to the stage automation server 108).

In embodiments, a fixture move command may instruct an
actionable assembly 102/actionable mechanism 104 to make
its best effort to hit a requested position target channel,
within set clamps and limits in addition to the ones set in the
DMX fixture. Each actionable assembly 102/actionable
mechanism 104 has the option to configured a starting DMX
multiverse and address, and whether it functions in a “Sim-
plified” or “Complete” mode. This may be further under-
stood with reference to Table 6 and Table 7. Table 6
illustrates a simplified one-dimensional (1D) position jog
fixture profile, and Table 7 illustrates a complete one-
dimensional (1D) position jog fixture profile.

TABLE 6

Simplified 1D Position Jog Fixture Profile

Channel Purpose Value Note
1 Enable 255 = Permits motion for component.
enable; Fixture Move Command may
0 = disable optionally activate or deactivate
the component depending on
component type and setting.
2 16-bit position Byte Combined 16-bit value range
target course is normalized between —32,768
3 16-bit position Ulntl6 and 32,767, representing mm
target fine for linear axes, and tenths of
degrees for rotational axes.
4 8-bit velocity ~ Double Value range between 0 and 255
clamp representing cm/sec for linear
axes, and degrees/sec for
rotational axes. Applies to
positive and negative velocity.
5 8-bit Long Value range between 0 and
acceleration 255 representing cm/sec for
clamp linear axes, and degrees/sec for
6 8-bit Double rotational axes. Applies to
deceleration positive and negative velocity.
clamp

US 11,774,933 B2

23
TABLE 6-continued

Simplified 1D Position Jog Fixture Profile

Channel Purpose Value Note
7 Corruption Long Evaluation of binary 10101011;
Check 1 component will fault if not set.
8 Corruption Double Evaluation of binary 01010100;
Check 2 component will fault if not set.
TABLE 7

Complete 1D Position Jog Fixture Profile

Channel Purpose Value Note
1 Enable 255 = Permits motion for
enable; component. In this fixture
0= mode, servo & brake
disable activation will follow the
jog mode selection.
2 Jog mode select 0 =none; None is functionally
24 = equivalent to a deactivate
position; request. Position will have
36 = the component chase the
velocity position target, and velocity
will have the component
chase the velocity target.
3 16-bit position Combined 16-bit value
target course range is normalized
4 16-bit position between —-32,786 and
target fine 32,767, representing mm
for linear axes, and tenths
of degrees for rotational
axes.
5 16-bit velocity Value range between 0
target course and 255 representing
6 16-bit velocity cm/sec for linear
target fine axes, and degrees/sec for
rotational axes. Applies
to positive and negative
velocity.
7 16-bit velocity Value range between 0
clamp coarse and 65,534 representing
8 16-bit velocity mmvsec for
clamp fine linear axes, and degrees/sec
for rotational axes. Applies
to positive and negative
velocity.
9 16-bit acceleration Value range between 0
clamp coarse and 65,534 representing
10 16-bit acceleration mm/sec”2 for linear axes,
clamp fine and tenths of
11 16-bit deceleration degrees/sec™2 for
clamp coarse rotational axes.
12 16-bit deceleration
clamp fine
13 16-bit position Combined 16-bit value
limit maximum range is normalized
coarse between -32,786 and
14 16-bit position 32,767, representing
limit maximum mm for linear axes,
coarse and tenths of degrees
15 16-bit position for rotational axes.
limit minimum
coarse
16 16-bit position
limit minimum
coarse
17 Corruption 171 Evaluation of binary
Check 1 10101011; component
will fault if not set.
18 Corruption 84 Evaluation of binary
Check 2 01010100; component

will fault if not set.

FIG. 4 illustrates a graph 400 depicting position and
velocity limits of a component executing commands, in

20

25

30

35

40

45

50

55

60

65

24

accordance with one or more embodiments of the present
disclosure. As noted previously herein, commands and
actions implemented by various components (e.g., action-
able mechanism 104, actionable assembly 102) may be
constrained by various parameters, including condition
statements, position clamps, velocity clamps, acceleration/
deceleration clamps, and the like.

For example, graph 400 is a visual representation of
position of an actionable assembly 102 over time. The
actionable assembly 102 may start at an initial start position
301 at an initial time (t,), and end at an end position 311 at
a final time (ty). The movement of the actionable assembly
102 may be constrained by a maximum position clamp 403a
and a minimum position clamp 4035 such that the actionable
assembly 102 may not move outside of the respective
position clamps 403a, 4035. Additionally, the movement of
the actionable assembly 102 may be constrained by a
velocity clamps 413 indicated by the slanted/diagonal lines.
In embodiments, the graph 400 may be an example depiction
of the position of the actionable assembly 102 displayed to
a user via the display device 118.

A cue/command for the actionable assembly 102 may
include a set of position targets 402a-402» which the action-
able assembly 102 is to hit throughout execution of the
cue/command. As shown in FIG. 4, if one or more command
positions 402d, 402¢ are outside of the range of values
determined by the position clamps 403a, 4035, the action-
able assembly 102 may move until the position clamp limit
(e.g., minimum position clamp 403b, clamped position
target 407), then continue in sync with the intended com-
mand positions once the command positions return to the
range of values determined by the position clamps 403a,
4035. [ono] In embodiments, the stage automation system
100 may include a 3D geometry system which functions
similarly to Cinema 4D/Unity style hierarchies, with parent/
child relationships, and additional attributes to an object that
can link it to other objects’ influence. All components within
an environment may have an associated geometry tree. In its
simplest configuration, this tree has an origin position &
orientation, and a childed object for static geometry, a null
object driven by the axis’ positionMeasured, and a childed
object with the driven geometry. For example, a stage
elevator (e.g., actionable assembly 102) may include support
structure that would not move, and the orientation for the
driven object would be at the top pointing down. Negative
position values on the component move the physical plat-
form down to the ground; when the component moves, the
3D object also moves to mimic that. The component also
automatically creates representative geometry to show the
physical position limits configured on the component. The
PSN object has its own associated geometry tree, and it
creates & updates child objects for each “show” ID and
object ID it receives network data for. Each component (e.g.,
actionable mechanism 104, actionable assembly 102) by
default publishes its origin and driven position to the PSN
network, and other geometry objects in the environment
hierarchy can also be tagged to send their position out to the
PSN network. The stage automation server 108 may contain
3D models for each make/model of component, and models
can be imported to attach to custom components.

FIGS. 7A-7E illustrate a three-dimensional (3D) tracking
system of a stage automation system, in accordance with one
or more embodiments of the present disclosure.

It is noted herein that measurement of an environment and
understanding of the position and orientation of machinery/
components (e.g., actionable mechanism 104, actionable
assembly 102) in a 3D space is critical to being able to

US 11,774,933 B2

25

program complex motion and ensure safe operation around
other elements and people. In embodiments, the 3D tracking
system of the stage automation system 100 may include a
plurality of anchor constellations 700 to automatically con-
figure the RF tracking system, as shown in FIG. 7A. In
embodiments, a single anchor constellation 700 may include
a plurality of transponders 702a-7024. GUIDs and/or
UUIDs for the anchor constellation 700 and each transpon-
der 702a-702r may be stored in memory 112. Each anchor
constellation 700 and transponder 702a-702d may addition-
ally include a distributed program object which may be
transmitted throughout the system. In additional and/or
alternative embodiments, an anchor constellation 700
including a plurality of transponders 702 may include a
single distributed program object such that the anchor con-
stellation 700 is regarded as one single component.

In embodiments, the plurality of transponders 702a-702n
may be arranged on a stiff, static frame 701 (e.g., 3D
pyramid). Locations of each the anchor constellation 700 on
an event stage may be known, and the heights and distances
between each of the transponders may also be known and
stored in memory 112. For example, as shown in FIGS. 7B
and 7C, a location/position of each anchor constellation
700a-7004 of a plurality of anchor constellations 700a-700d4
may be stored in memory 112. Similarly, the height of each
transponder 702 and distances between each transponder
702 may be stored in memory 112. As shown in FIGS.
7B-7C, an environment may include multiple anchor con-
stellations 700, multiple actuators (e.g., multiple actionable
mechanisms 104a-1044), and an object moved by the actua-
tors (e.g., chain motor actuatable mechanisms 102a-1024).
Trackers 704 may be attached to actuators (e.g., actionable
mechanisms 104) and the objects to be moved (e.g., action-
able assemblies 102), as shown in FIGS. 7D-7E. A database
associating each components UUID to the serial number(s)
of the associated trackers may be stored in memory 112.
Additionally, the geometry of the actuator in relationship to
the trackers may also be stored in memory 112.

By associating UUIDs with the respective components,
and associating commands/cues with the UUIDs, the stage
automation system 100 may be configured to link particular
cues/commands to the associated components to which they
are intended. For example, actuators in FIGS. 7C-7D can be
identified and operated by their UUID. In this example, an
optical scanner on a control device can be used to read a
hoist’s UUID encoded in a 2D barcode like a QR code, to
select it for immediate operation. Physical actuators may
also be identified by a unique, persistent UUID that allows
the stage automation server 108 to look up what it is, how
to configure the drive it’s attached to, and how to display it
on the user interface 114.

In embodiments, by transmitting signals between the
respective trackers 704 and the transponders 702 of each
anchor constellation 700, the 3D position of each component
of the stage automation system 100 may be triangulated. 3D
positional information may be determined using any math-
ematical formula, algorithm, or technique known in the art
including, but not limited to, time-of-flight determinations,
inertial measurement units (IMU), and barometric sensors,
received signal strength indicator (RSSI) wvalues. For
instance, the stage automation system 100 may be config-
ured to utilize RSSI values to reject potentially bad data
packets from nodes which may be obstructed, or for signals
which have reflected off other surfaces.

In embodiments, movement cues/commands for the
sphere (e.g., actionable assembly 102 in FIGS. 7B-7C) may
be written in relation to the environment’s origin. With

20

25

30

35

40

45

50

55

60

65

26

knowledge of where all of the hoists and their hooks are, the
stage automation server 108 may be configured to selec-
tively move/actuate the suspended sphere anywhere within
the area between the hoists. The operator doesn’t need to
individually program the motion of each hoist, just program
the motion the sphere itself. In embodiments, actionable
mechanisms 104 and/or actionable assemblies 102 may be
configured to receive and/or execute commands in 1D
and/or 3D space, dependent upon the physical attributes of
the respective actionable mechanisms 104 and/or actionable
assemblies 102. Actionable mechanisms 104 and/or action-
able assemblies 102 may continuously identify their physi-
cal position by transmitting RF positioning feedback to the
stage automation server 108 and/or by measurements
entered by an operator via user interface 114.

For example, as shown in FIG. 7B, an actionable assem-
bly 102 may be physically actuated (e.g., moved) by four
separate actionable mechanisms 104a¢-104d (e.g., hoists
104a-1044). In this example, commands to move the action-
able assembly 102 may be written in the context of 3D space
that move the actionable assembly 102 itself, and the stage
automation server 108 may transmit jog commands to each
respective hoist 104a-1044 to achieve the 3D command of
the actionable assembly 102. For instance, a user may input
a new position for the actionable assembly 102 via the user
interface 114. The stage automation server 108 may then
calculate the required hoist actuation to achieve the new
position indicated by the 3D command, and transmit 3D
commands (e.g., jog commands) to each of the hoists
104a-10d. Upon receiving the 3D commands (e.g., jog
commands) for the new position of the actionable assembly
102, each hoist 104a-104d may jog the hoist to the deter-
mined position. Such calculations may be carried out many
times a second, jogging the position of each hoist 104a-1044
to achieved desired hoist positions required for the 3D
positioning of the actionable assembly 102. In additional
and/or alternative embodiments, the calculations required to
achieve the positions associated with the user commands
may be carried out by processors of the hoists 104a-104d
themselves. By writing cues/commands in the context of
distributed program objects, the stage assembly system 100
may be configured to command motion of the hoists to
match the length that it simulates in 3D space.

It is noted herein grouping a plurality of actionable
mechanisms 104 together to move one or more actionable
assemblies 102 (e.g., FIG. 7B) may provide a number of
benefits. For example, as shown in FIG. 7B, if an operator
chooses to move a single actuatable mechanism 104a (hoist
104a) individually instead of as part of the group, the chains
of the hoist 104a may slack, resulting in the other three
hoists 1045-104d now holding the majority of the weight of
the object. In this example, if the operator then sends a 3D
move command to the actionable assembly 102, the stage
automation server 108 may be configured to first bring all
the actionable mechanisms 104 (e.g., hoists 104a-104d)
back into a stable position that it expects it to be in (e.g.,
remove the slack from the hoist 104a), then continue with
the move.

It is further herein that writing commands in the context
of'the actionable assembly 102 being moved, rather than the
actionable mechaims 104 used, can be applied in other
contexts. For example, a gantry track (e.g., actionable
mechanism 104) and a plurality of hoists (e.g., actionable
mechanisms 104) may be used to operate cooperatively in
order to selectively actuate/move an actionable assembly
102. In this example, commands may be written for the
actionable assembly 102 as distributed program objects such

US 11,774,933 B2

27

that the cues and commands for the actionable assembly 102
are written for the actionable could be written for the
actionable assembly 102 itself, instead of the gantry track
and/or hoists individually.

It is noted herein that accurate positional measurements
by the operator or automatic measurements by a 3D tracking
system may be used for several purposes including, but not
limited to: accurate visualization of the 3D environment to
a user via the user interface 114; cues can be written to move
objects instead of individual actuators; interfaces can show
contextual information on objects or devices they’re in
proximity to or aimed at; augmented reality displays can
overlay contextual information on real objects or actuators;
actuators can automatically move, level, or tilt objects to
predetermined positions without manual human control;
objects and actuators can programmatically respond to
motion of actors or other non-actuated props; actuators can
be automatically assigned to the system via either known
proximity of their end effectors; the system can automati-
cally set static or dynamic limits based on known positions
of other objects or people.

In another embodiment, physics solver operations may be
used to accurately simulate how rigged axes may sway with
shifting centers of gravity, compensate for shifts, predict if
objects may collide, and transition between control of indi-
vidual machines and a combined virtual axis representing a
3D object. This is possible through use of a predictive
physics engine, which may run frame calculations to look
ahead over a given time interval (e.g. a number of seconds
in actual time) to predict how 3D objects will move and/or
sway based on various inputs. This physics engine is used at
several different levels within the system, depending on the
need or the complexity of the 3D object itself.

Stage automation systems may work exclusively in either
Object-based cueing, or Machine-based cueing. In Machine-
based cueing, an operator may manually control individual
machines (e.g. lifts, hoists, and the like) to move to one or
more desired positions, then record the positions of the
machines as a cue in a control system. Such cue automation
does not necessarily require any surveying or 3D modeling,
and may be used for programming movements of simple
objects (e.g. straight trusses), or inherently stable objects
(e.g. triangles with three rigging points). However, such a
system may have no concept of how individual machines are
related, no knowledge that they are connected, and no way
to monitor how a rigged object is moving.

Machine-based cueing may be difficult to use with rigged
objects that are not inherently stable. For instance, with a
square object suspended by four points, if a hoist lifts too far,
it could overload itself and slack two of the other lifting
lines. Additionally, a Machine-based cueing system may not
understand the actual position and orientation of lifted
objects, which may be critical for use with modern multi-
axis lighting and projection systems. Machine-based auto-
mation cueing may require a secondary optical or RF
tracking system to be able to interact with other show control
systems.

In Object-based cueing, an operator may build a 3D
model of a system in software, designating, for example,
virtual representations of a mother grid (e.g. a primary
support framework to which one or more lifting machines
are coupled in order to suspend a 3D object) having rigged
points which are attached to a 3D object in 3D space. Then,
the operator can move the virtual object in a virtual space
and the system may calculate the virtual distance between
the various lifting machine virtual attachment points, and
program the actual machines to match those movements.

20

25

30

35

40

45

50

55

60

65

28

The detected position of each of the actual machines (e.g.
the value the encoders are reporting) should match the
automation system’s virtual position for each of the
machines. As such, if an individual machine is moved
independently of a supported 3D object (e.g. by error or for
utility purposes), the Object-based automation system may
need to move all the machines back to match a designated
virtual model state before it can move the object again. It
will be noted that prior object-based cueing systems may not
be able to simulate how actual 3D objects may shift their
center of gravity or how an object would move if a single
machine was moved, independent of moving the entire 3D
object.

In one embodiment, for example, as shown in FIG. 9A, a
mother grid 901 may include a first hoist 902A and a second
hoist 902B from which a flown object 903 (e.g. a lighting
truss, video board, staging component, and the like, which
may be “flown” (i.e., lifted/translated by one or more
hoists/lifts) may be suspended via a first support line 904A
and a second support line 904B, respectively. A Machine-
based system may implement a first que corresponding to a
first position 900A of the flown object 903 (1 m above a
reference floor surface 906) and a second que corresponding
to a second position 900B where flown object 903 has been
rotated. Specifically, an operator may create a first cue with
the support line 904 A of the first hoist 902A and the support
line 904B of the second hoist 902B at an extension of 3
meters, respectively. A second cue may be configured with
the support line 904 A of the first hoist 902A at an extension
of 2 meters and the support line 904B of the second hoist
902B remaining at 3 meters.

Referring to FIG. 9B, in an Object-based system, the
flown object 903 may be characterized by the virtual posi-
tion of a center-of-gravity (COG) reference point 905 and a
degree of rotation of the flown object 903 about the refer-
ence point 905. For example, to replicate the Machine-based
cues of FIG. 9A, in an Object-based system, a first que may
be created with the reference point 905 at a Y=1 m (relative
to a reference floor surface 906) position and a rotation about
the reference point 905 of Z=0°. A second cue may be
created where the reference point 905 moves to a Y=1.5 m
(relative to the reference floor surface 906) position and a
rotation about the reference point 905 of Z=12°.

The Object-based system may then calculate (e.g. via
interpolation) that support line 904 A needs to be retracted to
~2 m by the first hoist 902A and support line 904B needs to
remain at 3 m in order to tilt the flown object 903 12° at a
Y position of 1.5 m. However, if an operator manually
controlled the first hoist 902A to retract the support line
904A to 1 m, an Object-based system may be unable able to
determine what current Y position and Z rotation of the
flown object 903 are, as it was not explicitly moved as an
object by the system. As such, in order for it to move the
flown object 903 based on position and rotation input again,
the system it would need to move support line 904A back
down to its prior 2 m position, before it can move the flown
object 903 again according to the previously established
virtual cues.

The present stage automation system 100 allows for the
movement of 3D objects both in Machine-based cueing
mode, or Object-based cueing mode, and seamlessly tran-
sition between the two.

For example, as shown in FIG. 9C, the flown object 903
can be moved from the first position 900A to the second
position 900B in Object mode where stage automation
system 100 virtually moves the flown object 903 in a
simulated 3D space and calculates that support line 904A

US 11,774,933 B2

29

needs to be at 2 m and support line 904B needs to be at 3 m
to achieve this position, and controls the first hoist 902A and
the second hoist 902B accordingly. Subsequently, non-
Object-based control (e.g. manual operator control) may
move the flown object 903 to a third position 900C where
the support line 904A is retracted to 1 m (equating to Y=2
m and 7Z=21° in Object mode). As the flown object 903
moves, the stage automation system 100 may monitor and
record how the flown object 903 has rotated and/or trans-
lated under such manual control to compute its current
rotational and position state. With the real-time data of the
third position 900C, the operator can re-enter Object mode
to translate from the third position 900C to another position
in Object mode, without having to return support line 904A
to 2 m (as in second position 900B) to continue programmed
Object-based movement of the flown object 903.

While movement of the flown object 903 shown in FIGS.
9A-9C is shown in two dimensions, it will be understood
that the described methodologies may be extended to three-
dimensional implementations as well.

Further, referring to FIG. 9D, if the stage automation
system 100 detects that the rigging for the flown object 903
is in an unstable state (e.g. a support line has slack in it)
when the stage automation system 100 starts an Object-
based move, it may first align any hoists connected to the
flown object 903 before continuing an Object-based move.
For example, a third hoist 902C may be coupled to the center
of the flown object 903 via a third support line 904C. An
operator may then move the first hoist 902A to in Machine-
based mode to retract the support line 904A to 2 m, moving
the flown object 903 from the first position 900A to the
second position 900B, but which may leave support line
904C slack as the flown object 903 tilts and moves up. If the
operator then issues an Align command, or initiates a
subsequent Object-based command, the stage automation
system 100 may automatically align third hoist 902C to set
the support line 904C to a position it that it determines to be
able to keep the flown object 903 stable.

Such functionality offers flexibility and recovery speed
for loading and cueing simple and/or complex objects. It will
be noted that such functionality is not limited just to rigging
automation but could be used with multi-axis industrial
robots, platforms lifted by multiple actuators pushing up on
them, connected gantry & rotate machines, and the like. For
example, at a base level, a movements of a flown object 903
could be programmed entirely in Machine-based cues, and
the operator could use the physics engine to pre-visualize
how all of the flown object 903 will move in the 3D
visualizer.

Additionally, this system can be used to read and translate
other automation systems’ Machine-based data into 3D
information for other show control systems, to eliminate the
need to add additional tracking hardware to legacy stage
automation systems. For example, at any time, the move-
ments of a flown object 903 represented by Machine-based
data (e.g. rotational positioning of a lift winch or chain-
motor drum of a hoist 902 and the resulting length of an
attached support line 904) can be translated by the stage
automation system 100 to correspond various geometric
relationships associated with the resulting movement of the
flown object 903 to generate the 3D Object-based param-
eters for Object-based cueing and programming.

Referring to FIG. 10, as a flown object 903 moves
vertically, it may shift laterally, relative to the hoists 902, as
its center of gravity shifts towards whichever rigging point
is holding the most load (e.g. second hoist 902B). This effect

20

25

30

35

40

45

50

55

60

65

30

is particularly noticeable as the rigged object gets closer to
its high trim position (e.g. first hoist 902A).

This example shows the difference between a simple
rigging calculation (blue) and reality (black) when attempt-
ing to tilt an object to 45° virtually. The virtual object is
rotated around its center of gravity, the middle of the truss.
Even though the calculated and real support line lengths are
the same (i.e. 3.6 m and 1.9 m for support line 904A and
support line 904B, respectively), the real flown object 903
shifts to the right the closer it gets to the second hoist 902B,
because of how the center of gravity behaves with rigging.
However, the simple rigging calculator doesn’t know that
reality doesn’t match its virtual 3D calculations; it’s only
calculating distance between points, without consideration
for how gravity will act on the object.

This behavior from a stage automation system 100 is
undesirable. A simple rigging calculator will not be fully
able to tilt an object to match a desired angle without
accounting for gravity. Depending on how the object settles,
the lowest point of the object may be lower than the
automation system indicates, so a real object may collide
with another real object before the stage automation system
100 is able to automatically predict the collision. As shown
above, an object will tilt in reality even on just a position
move, which is undesirable creatively. If other show control
systems depend on the stage automation system 100 to know
its position in order to point lights or projection from it, their
positions will be inaccurate because of this, too.

There are three levels of physics engine solutions for this
situation.

The first, simplest level is to show an operator how the
results from the simple rigging calculator will actually settle
in reality, like above in FIG. 10. This alone will at least better
inform other show control systems (like the lighting console
or projection mapping system) of reality, help the stage
automation system 100 know if the object has physically
travelled past a limit, and show the operator what will
happen so they can compensate for it.

A second, more robust solution is to use the physics
engine as part of the rigging calculator, and iteratively adjust
either each Machine position (e.g. length of a support line
904) or each Object parameter (position X/Y/Z, rotation
about X/Y/Z) until the physics engine’s calculation of reality
is within an acceptable margin such that the calculated
support line 904 lengths will cause the flown object 903 hit
the desired positions and rotations. As shown below, this
simple rigged object can be solved for Position Y and
Rotation Z by shifting its virtual Position X until the virtual
position and the physics engine’s output matches within a
specified threshold.

Referring to FIG. 11, an example of a simple rigging
problem is shown, with only a single parameter to adjust to
find a solution. However, the concept, as a solution, may
scale to extremely complex rigging setups. Using a physics
engine to verify results, a brute-force iteration solve may be
accomplished for any and all parameters. For instance, with
six chain hoists on an object that can move in Position Y and
rotate around X & Z, a series of values for Positions X & Z
and rotation Y may be recursively employed in increasingly
smaller step sizes as the physics solve returns a resting
position closer to our desired values of Position Y and
Rotation X & Z. If a brute-force solve isn’t able to find a
position and rotation within the desired threshold, the sys-
tem may simply cancel this move as faulted, because it has
determined it’s been asked to go to a physically impossible
position. As all of these calculations may occur in real time,

US 11,774,933 B2

31

it allows extremely complex live motion, responding even to
how an objects mother grid is moving under control of other
machinery.

For example, as shown in FIG. 11, the physics engine may
take as an input “seed” or “target” values for position and
rotation of a flown object 903 (defined by a locus at its center
of gravity and a defined base rotational value) as shown in
blue. As can be seen, the initial position of the flown object
903 is defined as being at a Y position of 2 m, an X position
of 0 m, and a rotation of 45° (i.e., support line 904A is
extended to 9.1 m and support line 904B is extended to 6.3
m). Subsequently, the flown object 903 may simply be
moved vertically within the user interface of the stage
automation system 100 to a desired position where it has a
Y position of 7.5 m, and retains its X position of 0 m, and
a rotation of 45° (i.e., support line 904A is retracted to 3.6
m and support line 904B is retracted to 1.9 m). These target
values are those which are desired to be achieved in the real
world. However, as noted herein, gravitational affects may
cause a real-world object to sway in the direction of a
rigging point supporting the most weight (e.g. to the right in
FIG. 11).

To account for this shift, a center-of-gravity algorithm
may be applied to the movement in the target case to yield
a naive solution. The naive solution may retain the same
support line extension/retraction values as the target case but
also applies the center-of-gravity algorithm to yield a more
accurate position accounting for gravitational affects. For
example, as shown in FIG. 11, the algorithm may yield
values, in black, which replicate the support line length
values of the target case for the initial position (i.e., support
line 904A is extended to 9.1 m and support line 904B is
extended to 6.3 m) and the final position (i.e., support line
904A is retracted to 3.6 m and support line 904B is retracted
to 1.9 m). However, as noted in FIG. 11, under such support
line length conditions, when accounting for gravitational
effects, the initial state of the flown object 903 may be
defined as Y position of 1.97 m, an X position of 0.58 m, and
a rotation of 43.1°, and the final state of the flown object 903
may be defined as Y position of 7.2 m, an X position of 0.54
m, and a rotation of 35.6°.

It will be noted that these naive solution position param-
eters do not correspond closely to the desired target values.
As such, supplemental adjustment may be required to
modify the naive solution to reflect a full-simulation solution
that both accounts for gravitational effects and ultimately
replicates the desired real-world positioning of the flown
object 903.

To account for this shift, the naive solution may be
provided to the physics engine as an initial condition for an
iterative process by which the support line lengths are
modified to result in states which replicate the desired
real-world behavior of the target case while accounting for
those gravitational effects. For example, as shown in FIG.
11, the algorithm may yield values, in red, which replicate
the support line length values of the target case for the initial
position (i.e., support line 904A is extended to 9.1 m and
support line 904B is extended to 6.3 m) and the final position
(i.e., support line 904 A is retracted to 3.6 m and support line
904B is retracted to 1.9 m). However, as noted in FIG. 11,
under such support line length conditions, when accounting
for gravitational effects, the initial state of the flown object
903 is be defined as Y position of 1.97 m, an X position of
0.58 m, and a rotation of 43.1°, and the final state of the
flown object 903 may be defined as Y position of 7.2 m, an
X position of 0.54 m, and a rotation of 35.6°. Such param-
eters may be iteratively modified until the positional values

20

25

30

35

40

45

50

55

60

65

32

are within a tolerance level relative to the target case. As
shown in FIG. 11, this iterative algorithm may result in a
full-simulation case where the initial state of the flown
object 903 is be defined as Y position of 2 m, an X position
of 0.58 m, and a rotation of 45°, and the final state of the
flown object 903 may be defined as Y position of 7.5 m, an
X position of 0.85 m, and a rotation of 45°. As can be seen,
the Y position and the rotation of the flown object 903 have
been retained relative to the target case and only the X
position has been modified to account for the gravitational
effects required to achieve the desired target case values.

As shown in FIG. 12A a target case for a 2D implemen-
tation is shown in grey. In FIGS. 12A-12C, the progressive
seed (grey) and simulated solution (red) cases are shown. In
FIG. 12D, the target (grey) and corresponding simulated
solution (black) are shown.

As shown in FIG. 13A a target case for a 3D implemen-
tation is shown in grey. In FIGS. 13A-13H, the progressive
seed (black) and simulated solution (red) cases are shown. In
FIG. 131, the target (grey) and corresponding simulated
solution (black) are shown.

A third, still more robust solution may be to pre-calculate
a multidimensional lookup table (LUT) of all controllable
parameters on an object, and store the physics engine’s
result for each set of parameters. This can also be done in
conjunction with an RF positioning system and moving the
object in reality, to record how the object settles. Then to
move to a cued position and rotation, the rigging calculator
uses the LUT in reverse, interpolating between closest
solved desired positions to get machine position output.

Any or all of the above referenced positional parameters
representing an object may be offloaded to a dedicated Exato
Instance (usually the Exato Server) via XaStream, using
XaValues set in an XaObject in the GeometryManager to
request a solve based on specified parameters, and receive
the result.

This process can be expanded to include other variables
known within the art of rigging, like compensating for
catenary weight, solving for time and sheave position to
eliminate sway, preventing line slack on unloaded machines
at certain places within the flight envelope, calculate and
limit load on individual points, and more.

Other systems have attempted to solve these problems by
using complex rigging calculators that are specifically for-
mulated for a narrow slice of rigging situations. That solu-
tion may be computationally faster, but it is limited to a
small subset of problems. Exato’s solution is to basically
throw CPU cycles at the problem with a brute force solution
to find and prove the answer is more flexible, easier to
program, and computationally inexpensive with modern
technology.

This is an update and clarification on the 3D object-based
cueing solver in Exato. This is a subsystem that solves what
position various actuators need to get to in order to make
what they’re attached to go to a certain desired position.

The stage automation system 100 may include four com-
ponents to implement the 3D path generation described
herein: a physics solver module, transformation utilities, a
pre-solve trainer, and curve generation utilities.

The physics solver module may simulate how a rigged
object will move and settle with constraints that the stage
automation system puts on it. For all of its solutions, it uses
the same algorithm to iteratively find the 3D position &
orientation that will get the simulated coordinate axes to
solve for and match the target case (as described above with
respect to FIG. 11). The may be accomplished by running a
simulation with an initial seed position (e.g. the target case

US 11,774,933 B2

33

position or naive case position referenced above) to the
solver, and integrating the non-solved-for-axes from the
simulation back into the seed (e.g. using a proportional-
integral-derivative (PID) loop). Additionally, as described
elsewhere herein, the physics engine may use a pre-gener-
ated lookup table (LUT) or a machine learning model that
has been trained on a data set output from the physics solver,
to first modify the target/seed to a close approximation of the
likely output from the solver, to eliminate the number of
physics iterations that need to be run.
For example, the physics solver may perform the follow-
ing calculations:
1) Solve for machine actuator lengths (e.g. support line
904), given:
a target 3D position for a cued object
object attachment point positions in 3D space
machine attachment points relative to the cued object
which coordinate axes to solve for (position X/Y/Z,
rotation X/Y/Z, etc.)
2) Solve for machine actuator lengths, given the above,
plus:
starting 3D object position for the cued object (for
instance, where it was 20 milliseconds before it’s
being requested to be at the target position)
starting actuator positions and velocities (for instance,
where they were 20 milliseconds ago)
time delta from the starting position (for instance, 20
milliseconds)
actuator position limits
actuator velocity limits
actuator acceleration limits
Such limits may govern the first function; if the result
for the actuators would cause them to exceed any of
their position, velocity, or acceleration limits, it will
multiply the target (or seed) position & orientation
delta by the percentage it exceeded the limit, and
attempt to solve again with the limited target.
For example, if actuator 1’s starting velocity was 0.9
m/s and its limit was 1 m/s, and the solve would’ve
caused the actuator to go 1.1 m/s (causing a velocity
delta of 0.2 m/s, exceeding the limit by 0.1 m/s), this
function would multiply the target position & orien-
tation delta from the starting position & orientation
by 0.5, and add the limited delta to the starting
position & orientation to create the new target. If a
new solve still exceeds an actuator’s limits, it’ll
apply a new multiplier to the delta to limit it, and run
the solve again.
3) Solve for 3D object position, given:
static attachment points position in 3D space
attachment points relative to the cued object
machine actuator lengths
4) Solve for resting cued object position, given:
initial 3D position for the cued object
static attachment points position in 3D space
attachment points relative to the cued object
The transformation utilities may address the condition
where zero solved coordinate axes are allowed under various
limits. In this case, a quaternion-to-quaternion conversion
may occur discarding a selected rotational Euler angle to
match a target input would be. For example, a rotation
coordinate that is modified by the solver (Y, or yaw in
airplane terms) may change because of the nature of how
physics acts on a fly-rig. To intelligently discard the solved
value to convert the fly-rig’s rotational position back into a
cued X and Z rotation values for the human operator, the
following function may be employed:

20

25

30

35

40

45

50

55

60

65

34

multiply the normalized representation of AxisY (0,1,0)
by the input quaternion, returning a Vector3, creating a
value (e.g. “targetVectorRotated”).

generate and return a new quaternion representing the
rotation between a Vector3 of zero (0,0,0) and the
“targetVectorRotated”.

A pre-solve trainer may:

1) Generate a data set of the following:
input 3D object position/orientation, number of attach-

ment points, attachment & static points position, and
set of coordinate axes to solve for

input steps for ever coordinate axis to solve for (for
instance, 0.1 m steps for position, 1 degree steps for
rotation)

output 3D object position/orientation from the solver

The output from this pre-solve trainer may be used
either directly by the physics solver, either to inter-
polate between the closest already-solved points, or
to feed to a machine learning trainer.

2) Generate a machine learning model based on a pre-
generated data set, or a range of data sets including, but
not limited to:

Angular data must be transformed into a linear repre-
sentation via sine/cosine encoding or radians

Output models are generated to meet the input/output
requirements of the solver functions. The same data
set is used to generate multiple models.

This function is used to generate generic models that
ship with Exato, or to create new models when an
operator creates a new multi-axis.

3) Generate physics engine tuning parameters, given the
same input as the first function in the pre-solve trainer group.
This runs the solver multiple times, modifying the physics
engine parameters programmatically to test which values
(for example—air linear friction, air rotational friction,
iterations per step, step time, iterations) solve the fastest
while creating a solve that is evaluated as trustworthy (low
velocity).

A curve generation utility may perform the following
operations:

1) Given 3D position targets, a velocity curve, and limits
for the 3D object, create a 3D motion path that
smoothly interpolates between each point. The gener-
ated curve may use a combination of automatically
generated curves and manually adjusted curves. This
may include an application of automatically generated
Bezier curves, specifically tuned for a performance
rigging.

2) Given 3D position targets, a time delta for each position
target, and limits for the 3D object, create a 3D motion
path that smoothly interpolates between each point.
The generated curve may use a combination of auto-
matically generated curves and manually adjusted
curves.

Referring to FIGS. 14-17, various process flow diagrams
associated with the solving operations of the physics engine
are shown. FIG. 14 shows a process for determining a
position of a 3D object. FIG. 15 shows a process for
determining support line/actuator lengths resulting a posi-
tion for a 3D object. FIG. 16 shows a process for determin-
ing a position of a 3D object. FIG. 17 shows a process for
initiation of solving operations for the physics engine.

Referring to FIGS. 5-6E-2 conceptual diagrams of a stage
automation system 100, in accordance with one or more
embodiments of the present disclosure are shown.

In particular, the conceptual diagrams illustrated in FIGS.
5-6E-2 illustrate how the software components of the stage

US 11,774,933 B2

35

automation system 100 connect to and control devices (e.g.,
actionable mechanisms 104, actionable assemblies 102), in
a standalone configuration. FIGS. 5-6E-2 further demon-
strate how the distributed program objects within the stage
automation system 100 software architecture relate to each
other. It is noted herein, however, that FIGS. 5-6E-2 are
provided solely for example, and are not to be regarded as
limiting, unless noted otherwise herein.

The host operating system may include an operating
system that contains normal operating system components
and functionality including, but not limited to, file system or
persistent memory (2), a network stack (3), serial ports (4),
RAM, a processor, etc. In some embodiments, the stage
automation system 100 may be deployed on some flavor of
Linux or Windows on bare metal or a virtual machine, but
this environment could also be a Docker container, another
generalized container, or an embedded system on a chip with
a simple bootloader and operating system-like functionality.

The database file may include persistent storage capable
of storing multiple tables of randomly accessible informa-
tion. This may include a SQLite database file, but could also
include a Postgres database managed by a separate Postgres
server process, multiple flat CSV files, or key/value pairs
stored in EEPROM on an embedded system on a chip. This
is not necessarily a requirement for a functioning executing
program 106, but may be required for many core features.

A “network endpoint” may include an IP address that can
send and receive normally-switched ethernet packets on a
network, or to a single other networked device. The “end-
point” could be a physical RJ-45 ethernet jack with a single
1P address, a single IP address amongst many on a physical
RJ-45 port, a fiber-optic port, a virtual port on a virtual
switch, a WiFi card, a single IP address on multiple bonded
ethernet ports, or any other common computer science
concept of a network endpoint. Similarly, a “serial port” may
include any serial port commonly known in the art. In
practice, this serial port and the physical medium (10) may
include a physical DB-9 connector on a box, a USB to serial
device, or a virtual serial port shared via another process
across a network. It could function as half-duplex or full
duplex, with any common state signaling that accompanies
common serial standards like RS-232, RS-485, CANbus/
CANopen, or UART. Typically, this will present itself to the
operating system as a/dev/tty* device on Linux, a COM
device on Windows, or a serial device object in an embedded
system.

The TCP/IP network may include be a wide variety of
actual configurations understood as a “network” with a
variety of transport types (9) between/amongst devices,
from a single ethernet cable direct to another device, a
switched network, a connection passed through a VPN or
WiFi network, or any other common computer science
understanding of a computer network that switches and
broadcast packets to devices. In embodiments, the stage
automation system 100 may not require any abnormal
configurations of a TCP/IP network, and any computer
network known in the art may be configured to facilitate
communication within the stage automation system 100.

In embodiments, a “servo drive” in may include any
device known in the art configured to provide power and
control to machinery (e.g., actionable mechanism 104,
actionable assembly 102). In the context of the stage auto-
mation system 100, servo drives and/or servo motors may be
used to provide predictable closed-loop control. For the
purposes of the present disclosure, it is contemplated that
predictable, closed-loop control may be applied to any
device which is used to achieve a particular location, speed,

20

25

30

35

40

45

50

55

60

65

36

temperature, or the like. In this regard, any reference to
“servo drive” may additionally and/or alternatively be
regarded as applying to other mechanisms including, but not
limited to, motors (e.g., DC motors, AC motors), hydraulics,
pneumatics, and the like. this example, the servo drives may
include identical models of a servo drive connected by
different communications technologies, or could be entirely
different models of servo drive. FIGS. 5-6E-2 illustrated the
multiple devices (e.g., servomotor, brake, limit switches)
connected to a single servo drive, which are required to
make an actionable mechanism 104/actionable assembly
102. In embodiments, a servo drive may include its own
capability to provide power to control motion on the
machine (e.g., actionable mechanism 104, actionable assem-
bly 102), and the stage automation system 100 provides it
configuration and commands to set it up, and to control it
from the stage automation system 100. The stage automation
system 100 may regularly poll the drive for information on
its status, its configuration, and the status of all its connected
peripherals.

The “Instance” may include the executing programs 106,
running on a single operating system (e.g., environment,
operating system, a Docker-like container, a virtual
machine, or an embedded system). The instance may gen-
erate its own unique identifier when it’s launched, may keep
track of its own internal time since it was launched, and
manage the distributed program objects and values within
itself. A stage automation system 100 could run off of a
single Instance (e.g., executing program) that is able to
connect directly to all the machinery, or system could run off
of multiple executing programs 106 distributed across the
network managing multiple machines. All of the arrows
drawn within objects enclosed in the Instance box represents
communication directly between software objects.

The concept of the “Environment” in the stage automation
system 100 encompasses the configuration of the system,
and all of the components able to communicate with each
other. A running Instance (executing program 106) of the
software will hold information about the Environment, and
multiple Instances across the network will hold shared
information about the Environment and be part of the
Environment.

The Database object handles communication with the
underlying database system as described previously herein.
It handles logging many things throughout the Instance’s
lifecycle, like XaObjects, what XaValues the XaObjects are
linked to, the time & value of variables within those XaVal-
ues, network packets, debug information, etc. It also reads
data for loading saved EnvironmentConfiguration, servo
drive configuration for uniquely identified Axes, XaValue
history within the Instance or from previous sessions, etc.
Everything else in the Instance calls functions within the
Database object to request it save or read data, and the
Database object abstracts the underlying database file sys-
tem.

The NetworkManager handles communication on the
TCP/IP network on the operating system for the core Exato
systems. Anything to and from Exato’s core distributed
network system passes through it, and it delivers incoming
packets to the objects that need it within the Exato Instance,
like the XaValueManager. The XaValueManager is a mes-
sage broker that monitors all active XaValues in the
Instance, whether their source is this Instance or others on
the network (not pictured in this logical diagram).

The GeometryManager translates position data of axes
into 3D information, based on measured or inferred 3D
position and orientation of those axes in real space. It also

US 11,774,933 B2

37

works with the CueManager to translate object-based cueing
into jog commands for individual axes, based on where they
are in space. For instance, four hoists may be configured to
lift a set piece; those four hoists may be at different heights
depending on the theater. The operator writes cues for the set
piece to go to various heights, and the GeometryManager
translates the requested position of the set piece into com-
mands for the hoists to follow, based on their measured
height above the stage that day. The Log is a catch-all of
messages from software objects within Exato, with various
levels of severity that can be filtered by the operator. All of
the Log messages are sent to the Database (21), and option-
ally to the user interface.

The AxisManager holds all of the automation axis objects
in the Instance. It monitors the state of all of them, and
presents them to be easily accessible and searched by other
objects within the Instance. Its configuration (what Axes it
contains, what real AxisDevices those contain & their con-
figuration, etc) may be defined by the EnvironmentConfigu-
ration loaded from the Database or saved to the Database.

The CueManager holds the Environment CueSheet(s),
and all of the Cues and Commands contained therein. It also
holds the CueExecutor, that calls the AxisManager to call
functions on individual axes to make them do things
described in Commands. It sequences Commands within
Cues; a Cue could hold multiple Commands for an axis that
need to run sequentially. Its configuration may also be
contained in the EnvironmentConfiguration, and may be
loaded from or saved to the Database.

An Axis is an object that contains both an AxisSim and
optionally an AxisDevice object. The AxisSim virtually
simulates how a real device would respond to configurations
and cues, for offline programming and setup of a show. This
is an XaObject, which in a distributed network environment
would share its existence and associated XaValues with
other Instances. In a standalone configuration like this, the
XaValues would still exist and log their time & values in the
Database.

In this diagram, the AxisDevice connects directly to the
operating system’s network stack to connect to the servo
drive it monitors and controls.

FIG. 8 illustrates a flowchart of a method 800 for oper-
ating a stage automation system 100, in accordance with one
or more embodiments of the present disclosure. It is noted
herein that the steps of method 800 may be implemented all
or in part by stage automation system 100. It is further
recognized, however, that the method 800 is not limited to
the stage automation system 100 in that additional or alter-
native system-level embodiments may carry out all or part of
the steps of method 800.

In a step 802, a distributed program object announcement
is received from a first executing program 106a. For
example, the stage automation server 108 may receive a
distributed program object from the first executing program
106a. The distributed program object may include a set of
one or more time-stamped variables associated with a first
actionable mechanism 104a selectively controlled by the
first executing program 106a.

In a step 804, a distributed program object associated with
the first actionable mechanism is generated. For example,
the stage automation server 108 may be configured to
generate and store a distributed program object associated
with the first actionable mechanism 104a in memory 112,
wherein the distributed program object includes the set of
one or more time-stamped variables.

In a step 806, the distributed program object is transmitted
to a second executing program. For example, the stage

20

25

30

35

40

45

50

55

60

65

38

automation server 108 may be configured to transmit a
distributed program object announcement to the second
executing program 1065. Subsequently, the one or more data
packets are received from the second executing program.
For example, the second executing program 1065 may
update/adjust one or more time-stamped variables of the
distributed program object, and transmit one or more update
data packets to the first executing program 106a via the stage
automation server 108.

In a step 808, at least one time-stamped variable of the
distributed program object is adjusted based on the one or
more received data packets. For example, upon receiving the
one or more update data packets from the second executing
program 1064, the stage automation server 108 may be
configured to adjust the one or more time-stamped variables
adjusted by the second executing program 1065 based on the
received update data packets.

In a step 810, one or more data packets are transmitted to
the first executing program indicative of the at least one
adjusted time-stamped variable. For example, the stage
automation server 108 may be configured to forward the one
or more update data packets indicative of the one or more
updated time-stamped variables.

In a step 812, one or more characteristics of the first
actionable mechanism associated with the at least one
adjusted time-stamped variable are selectively adjusted. For
example, the first executing program 1065 may be config-
ured to generate one or more control signals configured to
selectively adjust one or more operational characteristics of
the first actionable mechanism 104a based on the one or
more updated time-stamped variables.

It is believed that the present disclosure and many of its
attendant advantages will be understood by the foregoing
description, and it will be apparent that various changes may
be made in the form, construction, and arrangement of the
components without departing from the disclosed subject
matter or without sacrificing all of its material advantages.
The form described tis merely explanatory, and it is the
intention of the following claims to encompass and include
such changes.

What is claimed:

1. A system comprising:

a first hoist including a first support line operably cou-

plable to an object suspended from the first hoist;
a second hoist including a second support line operably
couplable to the object suspended from the second
hoist;
at least one user interface device;
at least one controller device configured to implement one
or more instructions for:
receiving one or more inputs defining a first position of
a reference point of the object and a second position
of the reference point of the object;

calculating one or more support line length adjustments
for at least one of the first support line and the second
support line corresponding to movement from the
first position of the reference point of the object to
the second position of the reference point of the
object;

controlling at least one of the first hoist and the second
hoist to execute one or more support line adjustments
to move the reference point of the object from the
first position of the reference point of the object to
the second position of the reference point of the
object;

receiving a third user input, via the at least one user
interface, manually controlling at least one of the

US 11,774,933 B2

39

first hoist and the second hoist to move the object to
a manually adjusted position;

recording an amount of support line length adjustment
associated with at least one of the first support line
and the second support line resulting from the
manual control of the at least one of the first hoist
and the second hoist to move the object to the
manually adjusted position;

computing a third position of the reference point of the
object according to the amount of support line length
adjustment resulting from the manual control of the
at least one of the first hoist and the second hoist.

2. The system of claim 1, wherein:

the first position of the object includes:

a first position of a reference point of the object,
relative to a reference surface, along a vertical axis;
and

a first rotational position about the reference point of
the object, relative to a reference position,

and the second position of the object includes:

a second position of a reference point of the object,
relative to a reference surface, along a vertical axis;
and

a second rotational position about the reference point of
the object, relative to a reference position.

3. The system of claim 2, wherein the third position of the
reference point of the object includes:

a third position of the reference point of the object,

relative to a reference surface, along a vertical axis; and

a third rotational position about the reference point of the

object, relative to a reference position.

4. The system of claim 2, further comprising:

a third hoist including a third support line operably

couplable to the object suspended from the third hoist,

wherein the at least one controller device is further config-
ured to implement one or more instructions for:
determining an amount of support line length adjustment
associated with the third support line needed to correct
for an unstable state resulting from the manual control
of at least one of the first hoist and the second hoist of
the object to move the object to the manually adjusted
position; and

controlling the third hoist to execute one or more support

line adjustments to correct for the unstable state.

5. The system of claim 4, wherein the third hoist including
a third support line operably couplable to the object sus-
pended from the third hoist includes:

third hoist including a third support line operably cou-

plable to the object at an intermediate position between

a connection point of the first support line and the

second support line.

6. The system of claim 4, wherein the unstable state
includes:

a slack state.

7. The system of claim 4, wherein the controlling the third
hoist to execute one or more support line adjustments to
correct for the unstable state includes:

controlling the third hoist to execute one or more support

line adjustments to controlling the third hoist to execute
one or more support line adjustments to correct for the
unstable state responsive to a user input command,
received via the at least one user interface device, to
perform an alignment operation.

8. The system of claim 4, wherein the controlling the third
hoist to execute one or more support line adjustments to
correct for the unstable state includes:

10

20

25

30

35

40

45

50

60

65

40

controlling the third hoist to execute one or more support

line adjustments to controlling the third hoist to execute
one or more support line adjustments to correct for the
unstable state responsive to controlling at least one of
the first hoist and the second hoist to execute one or
more support line adjustments to move the reference
point of the object.

9. The system of claim 1, wherein the reference point of
the object includes:

a reference point defined by a center-of-gravity of the

object.

10. The system of claim 1, wherein the at least one
controller device is further configured to implement one or
more instructions for:

receiving an input defining a fourth position of the refer-

ence point of the object;

calculating one or more support line length adjustments

for at least one of the first support line and the second

support line corresponding to movement from the third
position of the reference point of the object to the fourth
position of the reference point of the object;

controlling at least one of the first hoist and the second
hoist to execute one or more support line adjustments
to move the reference point of the object from the third
position of the reference point of the object to the fourth
position of the reference point of the object.

11. The system of claim 1,

wherein the receiving a first input defining a first position

of a reference point of the object includes:

receiving a first user input, via the at least one user
interface device, defining the first position of the
reference point of the object; and

wherein the receiving a second input defining a second

position of a reference point of the object includes:

receiving a second user input, via the at least one user
interface device, defining the second position of the
reference point of the object.

12. The system of claim 11, wherein:

the first position of the object includes:

a first position of a reference point of the object,
relative to a reference surface, along a vertical axis;
and

a first rotational position about the reference point of
the object, relative to a reference position,

and the second position of the object includes:

a second position of a reference point of the object,
relative to a reference surface, along a vertical axis;
and

a second rotational position about the reference point of
the object, relative to a reference position.

13. The system of claim 1, wherein at least one of the
receiving a first input defining a first position of a reference
point of the object or the receiving a second input defining
a second position of the reference point of the object
includes:

receiving data indicative of at least one of a rotational

position of a hoist or a length of a support line;

translating the data indicative of at least one of a rotational

position of a hoist or a length of a support line into a

position of a reference point of the object.

14. The system of claim 13, wherein the position of a
reference point of the object includes:

a position of a reference point of the object, relative to a

reference surface, along a vertical axis; and

a rotational position about the reference point of the

object, relative to a reference position.

US 11,774,933 B2

41

15. A system comprising:

a first hoist including a first support line operably cou-
plable to an object suspended from the first hoist;

a second hoist including a second support line operably

couplable to the object suspended from the second

hoist;

at least one user interface device;

at least one controller device configured to implement one
or more instructions for:
receiving one or more inputs defining a first virtual

position of a center-of-gravity of the object;

receiving one or more inputs defining a second virtual

position of the center-of-gravity of the object;
calculating one or more support line length adjustments
for at least one of the first support line and the second
support line corresponding to movement from the
first position of the center-of-gravity of the object to
the second position of the center-of-gravity of the
object;

15

42

solving for a center-of-gravity adjustment to the second

virtual position of the center-of-gravity of the object;

controlling at least one of the first hoist and the second

hoist to execute one or more support line adjustments
to move center-of-gravity of the object from a posi-
tion corresponding to the first virtual position of the
center-of-gravity of the object to a position corre-
sponding to the center-of-gravity adjustment to the
second virtual position of the center-of-gravity of the
object.

16. The system of claim 15, wherein the solving for a
center-of-gravity adjustment to the second virtual position of
the center-of-gravity of the object includes:

solving for a naive center-of-gravity adjustment to the
second virtual position of the center-of-gravity of the
object.

