a2 United States Patent

Mast

US011385610B2

US 11,385,610 B2
Jul. 12, 2022

(10) Patent No.:
45) Date of Patent:

(54)
(71)
(72)
(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

(56)

2011/0055231 Al*

2017/0060979 Al*

STAGE AUTOMATION SYSTEM
Applicant: Exato IP LL.C, Lancaster, PA (US)
Inventor: Ryan Mast, Lancaster, PA (US)

Assignee: EXATO IP LLC, Lancaster, PA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 134 days.

Appl. No.: 16/751,984

Filed: Jan. 24, 2020

Prior Publication Data
US 2021/0048786 Al Feb. 18, 2021
Related U.S. Application Data

Provisional application No. 62/938,118, filed on Nov.
20, 2019, provisional application No. 62/887,998,
filed on Aug. 16, 2019.

Int. CL.

GO5B 19/042 (2006.01)

U.S. CL

CPC ... GO5B 19/042 (2013.01); GO5B

2219/25011 (2013.01)
Field of Classification Search
CPC GO5B 19/042; GO5B 2219/25011; GO5B
2219/2664; GO5B 19/0426
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

3/2011 Huck GO6F 16/2471
707/751

HO4L 12/4625

3/2017 Webster

FOREIGN PATENT DOCUMENTS

CN 208130517 U * 11/2018

OTHER PUBLICATIONS

English Machine Translation of Chen, “Stage Convenient To Scene
Switch”, dated Nov. 23, 2018, Publication No. #208130517 (Year:
2018).*

* cited by examiner

Primary Examiner — Mohammad Ali
Assistant Examiner — Sheela Rao
(74) Attorney, Agent, or Firm — Suiter Swantz pc llo

57 ABSTRACT

A stage automation system may include a first and second
executing program configured to selectively control a first
and second actionable mechanism, respectively. The stage
automation system may further include a stage automation
server configured to: receive, from the first executing pro-
gram, a distributed program object announcement including
a set of one or more time-stamped variables associated with
the first actionable mechanism; transmit a distributed pro-
gram object announcement to the second executing pro-
gram; receive one or more data packets from the second
executing program; adjust at least one time-stamped variable
of the distributed program object based on the one or more
received data packets; and transmit one or more data packets
to the first executing program to cause the first executing
program to adjust the at least one time-stamped variable of
the distributed program object associated with the first
actionable mechanism.

20 Claims, 21 Drawing Sheets
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STAGE AUTOMATION SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority under 35 U.S.C. §
119(e) to U.S. Provisional Patent Application Ser. No.
62/887,998, entitled STAGE AUTOMATION SYSTEM,
filed Aug. 16, 2019, naming Ryan Mast as an inventor, and
U.S. Provisional Patent Application Ser. No. 62/938,118,
entitled STAGE AUTOMATION SYSTEM, filed Nov. 20,
2019, naming Ryan Mast as an inventor, both of which are
incorporated herein by reference in the entirety.

TECHNICAL FIELD

The present invention generally relates to a system and
method for stage automation, and more particularly, a hard-
ware and protocol agnostic system and method for stage
automation.

BACKGROUND

In the context of live events, such as concerts, plays, and
sporting events, a plurality of various components and
machinery may be required to work in tandem with one
another in order to properly execute all of the movements
and features of the live event. For example, in the context of
a concert, a stage automation system may include lights,
stage elevators, and winches configured to move stage props
which all must execute individualized commands in tandem
(e.g., coordination) with one another throughout the duration
of the concert. However, many stage automation systems
include hardware from disparate manufacturers, which may
be configured to run on disparate software programs and
communication protocols. In this regard, conventional stage
automation systems do not have an efficient mechanism with
which to communicate and control each hardware device
within the stage automation system.

For example, many traditional stage automation systems
communicate with each other across a network (e.g., TCP/IP
network, serial/bus-style network such as RS-485 or CAN-
bus) by reading and writing indexed “registers” across the
network. To get information on the position and velocity of
a certain servo drive, a controller of traditional automation
systems would need to be programmed for to perform
common functions on a drive. For instance, turn on the
motor, release the brake, and move forward for various servo
drives, the controller may need to set three separate registers
on a first servo drive manufactured by a first manufacturer,
and two separate registers in a particular sequence on a
second servo drive manufactured by a second manufacturer.
In this example, in order for the controller to interact with
both the first servo drive and the second servo drive, it would
need to have a map of what register indexes perform certain
functions, whether each servo drive operates in 16/32/64-bit,
what endian type each servo drive uses for storing and
transmitting numerical data, and include specific program-
ming for how to perform specific functions on each of the
first servo drive and the second servo drive.

As shown in the example above, traditional stage auto-
mation systems including hardware and software from dis-
parate manufacturers require excessive, tedious program-
ming to enable efficient coordination and communication
between the various devices. Additionally, programming
must be performed for each hardware/software device of the
stage automation system, making conventional systems dif-
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2

ficult to modify and/or expand. Therefore, there exists a need
in the art for a system and method which cure one or more
of the shortfalls of previous approaches identified above.

SUMMARY

A stage automation system is disclosed. In embodiments,
the stage automation system includes a first executing pro-
gram configured to selectively control a first actionable
mechanism, and a second executing program configured to
selectively control a second actionable mechanism. The
stage automation system may further include a stage auto-
mation server configured to: receive, from the first executing
program, a distributed program object announcement
including a set of one or more time-stamped variables
associated with the first actionable mechanism; generate a
distributed program object associated with the first action-
able mechanism, the distributed program object including
the set of one or more time-stamped variables; transmit the
distributed program object announcement to the second
executing program; receive one or more data packets from
the second executing program; adjust at least one time-
stamped variable of the distributed program object stored in
memory based on the one or more received data packets; and
transmit one or more data packets to the first executing
program. In embodiments, the one or more data packets are
configured to cause the first executing program to adjust the
at least one time-stamped variable of the distributed program
object associated with the first actionable mechanism, and
the first executing program is configured to adjust one or
more characteristics of the first actionable mechanism asso-
ciated with the at least one adjusted time-stamped variable.

A stage automation system is disclosed. In embodiments,
the stage automation system includes a stage automation
server communicatively coupled to one or more executing
programs via a network protocol. In embodiments, the stage
automation server is configured to: receive, from a first
executing program, a distributed program object announce-
ment including a set of one or more time-stamped variables
associated with an actionable mechanism running on the first
executing program; generate a distributed program object
including the set of one or more time-stamped variables in
memory; transmit the distributed program object to at least
one additional executing program; receive one or more data
packets from the at least one additional executing program;
adjust at least one time-stamped variables of the set of one
or more time-stamped variables of the distributed program
object stored in memory based on the one or more received
data packets; and transmit one or more data packets to the
first executing program. In some embodiments, the one or
more data packets are configured to cause the first executing
program to adjust at least one time-stamped variable of the
one or more time-stamped variables associated with the
actionable mechanism and adjust one or more characteristics
of the actionable mechanism associated with the at least one
adjusted time-stamped variable.

A method is disclosed. In embodiments, the method
includes: receiving, from a first executing program, a dis-
tributed program object announcement including a set of one
or more time-stamped variables associated with a first
actionable mechanism selectively controlled by the first
executing program; generating a distributed program object
associated with the first actionable mechanism, the distrib-
uted program object including the set of one or more
time-stamped variables; transmitting the distributed pro-
gram object to a second executing program; receiving one or
more data packets from the second executing program;
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adjusting at least one time-stamped variable of the distrib-
uted program object based on the one or more received data
packets; transmitting one or more data packets to the first
executing program indicative of the at least one adjusted
time-stamped variable; and selectively adjusting one or
more characteristics of the first actionable mechanism asso-
ciated with the at least one adjusted time-stamped variable.

BRIEF DESCRIPTION OF THE DRAWINGS

The numerous advantages of the disclosure may be better
understood by those skilled in the art by reference to the
accompanying figures in which:

FIG. 1 illustrates a simplified block diagram of a stage
automation system, in accordance with one or more embodi-
ments of the present disclosure.

FIG. 2A illustrates an announcement data packet of a
stage automation system, in accordance with one or more
embodiments of the present disclosure.

FIG. 2B illustrates a first stage handshake data packet of
a stage automation system, in accordance with one or more
embodiments of the present disclosure.

FIG. 2C illustrates a second stage handshake data packet
of a stage automation system, in accordance with one or
more embodiments of the present disclosure.

FIGS. 3A-3C illustrate a conceptual diagram of a time-
stamped variable with a publish variable mode and a time-
stamped variable with an omni-publish variable mode, in
accordance with one or more embodiments of the present
disclosure.

FIG. 4 illustrates a graph 400 depicting position and
velocity limits of a component executing commands, in
accordance with one or more embodiments of the present
disclosure.

FIG. 5 illustrates a conceptual diagram of a stage auto-
mation system, in accordance with one or more embodi-
ments of the present disclosure.

FIGS. 6A-1 to 6E-2 illustrate conceptual diagrams of a
stage automation system, in accordance with one or more
embodiments of the present disclosure.

FIGS. 7A-7E illustrate a three-dimensional (3D) tracking
system of a stage automation system, in accordance with one
or more embodiments of the present disclosure.

FIG. 8 illustrates a flowchart of a method for operating a
stage automation system, in accordance with one or more
embodiments of the present disclosure.

DETAILED DESCRIPTION OF THE
INVENTION

Reference will now be made in detail to the subject matter
disclosed, which is illustrated in the accompanying draw-
ings.

Referring generally to FIGS. 1-8, the present disclosure is
generally directed to a system and method for coordinated
stage automation. In particular, embodiments of the present
disclosure are directed to a stage automation system which
is configured to unite actionable mechanisms (e.g., mechani-
cal devices) manufactured by varying manufacturers (and
therefore operated on varying software/executing programs)
under a common communication umbrella. Additional
embodiments of the present disclosure are directed to a
method of controlling a stage automation system including
a plurality of motion devices operating on varying executing
programs.

It is contemplated herein that embodiments of the present
disclosure may facilitate the efficient communication and
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4

cooperation of varying actionable mechanisms within a
stage automation system. By communicating with each
actionable mechanism and executing program within a stage
automation system with a common communication protocol,
embodiments of the present disclosure may enable highly
coordinated and scalable stage automation systems.

FIG. 1 illustrates a simplified block diagram of a stage
automation system 100, in accordance with one or more
embodiments of the present disclosure. The stage automa-
tion system 100 may include, but is not limited to, one or
more actionable assemblies 102, one or more actionable
mechanisms 104, one or more executing programs 106, a
stage automation server 108, and a user interface 114.

In one embodiment, the stage automation system 100 may
be used in the context of live performances in order to
implement hardware and software-agnostic automation. For
example, the stage automation system 100 may be utilized
to control hardware (e.g., actionable assemblies 102, action-
able mechanisms 104) in the context of concerts, plays,
sporting events, and the like. In embodiments, each imple-
mentation of the stage automation system 100 may be
defined/described as an “environment,” such that the stage
automation assembly 100 implemented in the context of a
first concert is identified by a first environment, and the stage
automation assembly 100 implemented in the context of a
second concert is identified by a second environment. In
embodiments, an environment may include at least a stage
automation server 108 and one or more executing programs
106. An environment may be defined by a unique UUID, a
date and time the respective environment was initialized,
and a running clock in seconds from when the environment
was initialized. Data associated with each environment may
be stored in a memory 112 of the stage automation server
108. An environment may be further defined by a UUID of
a configuration file which set up the particular environment.
Generally, as it is used herein, the term “environment” may
be regarded as an individual “session” of the stage automa-
tion system 100.

The stage automation server 108 may include a local
server/controller and/or a remote server/controller. For
example, each environment may include a local server/
controller which controls and stores data associated with the
environment throughout the respective performance or
event. Following the conclusion of the performance/event,
the local server/controller (e.g., local stage automation
server 108) may be communicatively coupled to a remote
server/controller (e.g., cloud-based stage automation server
108) such that data associated with the environment may be
uploaded and stored in a centralized, cloud-based server
(e.g., cloud-based stage automation server 108). It is noted
herein that synchronizing local servers/controllers with a
centralized, cloud-based server (e.g., cloud-based stage
automation server 108) may enable troubleshooting known
issues, analysis to tune component issues, and machine
learning analysis to generate predictive models around
operators and various components.

In embodiments, the stage assembly system 100 may
include one or more executing programs 106a, 1065 (e.g.,
“instances”) communicatively coupled to the stage automa-
tion server 108. The one or more executing programs 106a,
1065 may be communicatively coupled with the stage
automation server 108 and/or other executing programs
106a, 1065 via any network protocol known in the art. For
example, the network protocol utilized by the stage auto-
mation system 100 may include, but is not limited to, a
transmission control protocol (TCP) or internet protocol (IP)
network (e.g., ethernet, WiF1i), a serial or bus-style network
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(e.g., RS-485), and the like. By way of another example, the
network protocol may include a socketless user datagram
protocol (UDP). In embodiments, communicative connec-
tions established between components of the stage automa-
tion system 100 (e.g., executing program 106a, 1065, stage
automation server 108, and the like) are performed via the
establishment of asymmetric and then symmetric encryp-
tion, such as datagram transport layer security (DTLS),
transport layer security (TLS), and the like.

The one or more executing programs 106a, 1065 may
include software and/or code programs which are configured
to control one or more actionable mechanisms 104 (e.g.,
devices). In embodiments, each executing software may be
uniquely identified by a UUID, a UUID of the environment
it exists within, and an internet protocol (IP) address. As
noted previously herein, hardware and industrial mecha-
nisms produced by various manufacturers may be run/
controlled by varying software programs. In this regard, a
first executing program 106a may include a software and
code base of a first manufacturer executed on a first set of
computers (e.g., servers, virtual machines, graphical user
interfaces (GUI)), and a second executing program 1065
may include a software and code base of a second manu-
facturer executed on a second set of computers. Each
executing program 106a, 1066 may include an individual
runtime configuration. For example, the first executing pro-
gram 106a may include a first software program with a first
configuration and the second executing program 1065 may
include a second software program with a second configu-
ration.

In embodiments, each executing program 106 is config-
ured to selectively control one or more actionable mecha-
nisms 104a-1047 (e.g., “axis” or “axes”). The one or more
actionable mechanisms 1044-104» may be communicatively
coupled to the respective executing programs 106a-1067 via
any wireline or wireless communication protocol known in
the art (e.g., TCP network, serial connection, and the like).
The one or more actionable mechanisms 104a-1047 may
include any machinery or industrial motion controlling
device known in the art including, but not limited to, a servo
drive, a motor, a linear motor, a brake, a valve, an encoder,
a solenoid, a light, a power source, and the like. For instance,
an actionable mechanism 104a may include a Control Tech-
niques M700 or a Kollmorgen AKD.

In embodiments, the one or more actionable mechanisms
104a-1047 are configured to selectively control one or more
characteristics of one or more actionable assemblies 102a-
102#. In this regard, actionable assemblies 102¢-1027» may
be regarded as the physical “thing” or “device” which gets
moved, and the actionable mechanisms 104 may be regarded
as the “controller” or means through which the actionable
assemblies 102a-1027 are moved. For example, the one or
more actionable assemblies 102a-1027 may include, but are
not limited to, a stage elevator, a lineset, a screen track, a
chain motor, a winch, a turntable, and the like. Operational
characteristics of the actionable assemblies 102a-102n
which may be selectively controlled by the actionable
mechanisms 104a-104» may include, but are not limited to,
a position/location, velocity, acceleration, deceleration,
operational state (e.g., “active/on,” “inactive/off”), voltage,
wattage, current, fault state, and the like.

It is noted herein that each actionable assembly 102a-
102r and/or actionable mechanism 104a-104z may be
described as existing within three-dimensional (3D) space of
a particular environment of the stage automation system
100. 3D positional data of various actionable assemblies
102a-1027 and/or actionable mechanisms 104a-104z may
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be defined by (X, y, z) coordinates. Rotational data may be
defined, transmitted, and stored within the stage automation
system 100 as quaternions, and presented to users as Euler
(X, y, z) values. For simplicity throughout the present
disclosure, the position (0, 0, 0) may be defined as down-
stage center of a particular venue or location within which
an environment of the stage automation system 100 is
employed. In a similar manner, for the purposes of simplic-
ity, upstage may correspond to positive z-values, elevations
above a ground/floor may correspond to positive y-values,
and stage left may correspond to positive x-values. It is
further noted, however, that positional data may be shown
and described in any manner known in the art and defined in
relation to any frame of reference.

In embodiments, the stage automation server 108 may
include one or more processors 110 and a memory 112, the
one or more processors 110 configured to execute a set of
program instructions stored in memory 112, the set of
program instructions configured to cause the one or more
processors 110 to carry out various steps of the present
disclosure. For example, the one or more processors 110 of
the stage automation server 108 may be configured to:
receive, from a first executing program 106q, a distributed
program object announcement including a set of one or more
time-stamped variables associated with a first actionable
mechanism 104a; generate a distributed program object
associated with the first actionable mechanism 104a, the
distributed program object including the set of one or more
time-stamped variables; transmit the distributed program
object to at least a second executing program 1065; receive
one or more data packets from the second executing pro-
gram 1065; adjust at least one time-stamped variable of the
distributed program object stored in memory 112 based on
the one or more received data packets; and transmit one or
more data packets to the first executing program 106a. Each
of these steps will be addressed in turn.

In embodiments, the stage automation server 108 may be
configured to receive, from a first executing program 106a,
a distributed program object announcement (e.g., “XaOb-
ject,” “XaValuesAnnouncement”) including a set of one or
more time-stamped variables (e.g., “XaValues™) associated
with a first actionable mechanism 104a. For example, a first
executing program 106a associated with a first actionable
mechanism 104q may transmit a distributed program object
announcement including a set of one or more time-stamped
variables associated with the first actionable mechanism
104a.

Distributing program objects (e.g., “XaObjects”) may
include objects which read, log, and command functionality
within the stage automation system 100. Each executing
program 106a may transmit a distributed program object
announcement associated with each respective actionable
mechanism 104a-1047 indicating that the respective action-
able mechanism 104a-104» exist within the environment. A
distributed program object may include any number of
time-stamped variables associated with a component (e.g.,
actionable mechanism 104a), cue, or command of the stage
automation system 100.

As it is used herein, “distributed program object
announcements” may be regarded as initial “announcement”
data packets of data which are transmitted by a particular
component in order to announce the component’s existence
within a particular environment. More specifically, a dis-
tributed program object announcement (e.g., announcement
data packet) may announce to other components of the stage
automation system one or more time-stamped variables
which the particular executing program 106 and/or action-
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able mechanism has to publish, or wishes to consume. An
announcement data packet may include a list of universally
unique identifiers (UUIDs) the sending component includes,
and definitions for each UUID. A “definition” within an
announcement data packet may be composed of the follow-
ing byte string illustrated in Table 1. The number of defi-
nition byte arrays which may be included within a single
announcement data packet may be dependent upon the
maximum transmission unit (MTU) and maximum packet

length of the stage automation system 100.
TABLE 1
“Definition” Byte Array Structure of Announcement Data Packet
Starting
Byte Bytes Type Content
0 16 UUID Time-stamped variable UUID
16 16 UUID Sending component UUID
32 1 Byte Value Value Type enum for the time-stamped
Type variable (e.g., bool, float, double,
string, bytes, GeometryPoint)
33 1 Byte BaseUnit BaseUnit enum for the time-
stamped variable
34 1 Byte Variable  Variable Mode for the time-stamped
Mode variable (e.g., publish, subscribe,
omni-publish)
35 1 Reserved for future use

The one or more time-stamped variables associated with
the first actionable mechanism 104¢ may include variables
associated with any characteristics (e.g., operational char-
acteristics) of the first actionable mechanism 104¢ includ-
ing, but not limited to, a position of the first actionable
mechanism 104¢ at a point in time, a velocity of the first
actionable mechanism 104a at a point in time, a brake
engagement status of the first actionable mechanism 104q at
a point in time, a connection status of the first actionable
mechanism 104q at a point in time, a command or cue
associated with the first actionable mechanism 1044 at a
point in time, and the like. By way of another example,
time-stamped variables may define other characteristics of a
particular component including, but not limited to, start/
initiation time, network lag, commands, target position/
velocity/acceleration, velocity clamp, position clamp, order
in a cue sheet, and the like. The one or more time-stamped
variables may include a UUID defining the time-stamped
variable, a UUID of the component (e.g., actionable mecha-
nism 104a) with which the value is associated, a unit of
measurement, and time-stamps indicating when each time-
stamped variable was captured.

In embodiments, each distributed program object (e.g.,
distributed program object announcement) may include a set
of one or more value types (e.g., “XaValueType”) defining
types of values associated with each time-stamped variable.
In this regard, each time-stamped variable of a distributed
program object may be defined by a value type. Value types
may include, but are not limited to, a Boolean value type
(true/false), a long integer value type (numeric), a double
float value type (numeric), a string value type (text), a byte
array value type (data), and the like. For example, a time-
stamped variable defining a DC bus voltage feedback of an
actionable mechanism 104 may be defined by a value type
of a double float value type (e.g., “322.12 V). By way of
another example, a time-stamped variable defining a status
of a brake (e.g., actionable mechanism 104) may be defined
by a Boolean value type (e.g., “true” for open, or “false” for
closed). By way of another example, a time-stamped vari-
able defining raw encoder feedback from a machine (e.g.,
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actionable mechanism 104) may be defined by a long integer
value type (e.g., “103923”). By way of another example, a
time-stamped variable may define a make and/or model
reported by a drive (e.g., actionable mechanism 104) as a
string value type (e.g., “Kollmorgen AKD-TBANO0607”).
By way of another example, a time-stamped variable defin-
ing a UUID of a drive (e.g., actionable mechanism 104) may
be defined by a byte array value type in hex (e.g.,
“2bd21b25b76849288{bed9874b6102877).

In embodiments, each distributed program object (e.g.,
distributed program object announcement) may include a set
of one or more variable modes defining various modes
associated with each time-stamped variable. In this regard,
each time-stamped variable of a distributed program object
may be defined by a variable mode. Variable modes asso-
ciated with each time-stamped variable may define how
other components within the stage automation system 100
may view and/or interact with each respective time-stamped
variable. Variable modes may include, but are not limited to,
a “publish” variable mode, a “subscribe” variable mode, and
an “omni-publish” variable mode.

For example, a publish variable mode indicates that the
component associated with the time-stamped variable is the
only component which may adjust/update the value. For
instance, if an actionable mechanism 104 include a time-
stamped variable indicative of current consumption for the
actionable mechanism 104 with a publish variable mode,
only the actionable mechanism 104 itself may adjust/update
the time-stamped variable, with other components being
unable to do so. By way of another example, a subscribe
variable mode indicates that components which depend on
the time-stamped variable (e.g., “subscribe” to the time-
stamped variable) may receive published updates when the
time-stamped variable is updated. For instance, if a second
executing program 1065 subscribes to a time-stamped vari-
able with a subscribe value type of the first executing
program 1064, the stage automation server 108 may transmit
data packets/distributed program objects to the second
executing program 106a each time the time-stamped vari-
able is updated. Components may subscribe or not subscribe
to other distributed program objects and/or individual time-
stamped variables based on their relevance to their own
operations. By way of another example, an omni-publish
variable mode indicates that a plurality of components may
adjust/update the value, and published updates are sent to
subscribed components. For instance, a brake (e.g., action-
able mechanism 104) may include a time-stamped variable
indicative of operational status (e.g., on/off) with an omni-
publish variable mode such that any component within the
stage assembly system 100 may adjust/update the opera-
tional status of the brake (e.g., turn it on or off).

As noted previously herein, an announcement data packet
(e.g., distributed program object announcement data packet)
transmitted by an executing program 106 may include one or
more time-stamped variables which the particular executing
program 106 and/or actionable mechanism has to publish, or
wishes to consume. For example, an announcement data
packet transmitted by the first executing program 106a may
include definitions for a first distributed program object
associated with the first actionable mechanism 104a, a
second distributed program object associated with the sec-
ond actionable mechanism 10454, a third distributed program
object associated with the third actionable mechanism 104c¢,
a fourth distributed program object associated with the
actionable assembly 1024, and the like. Announcement data
packets may describe the type of each component (e.g.,
actionable mechanism 104, actionable assembly 102), which
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time-stamped variables are associated with each respective
distributed program object, and a value type of each time-
stamped variable. For example, an announcement data
packet is shown in further detail in Table 2 below:

TABLE 2

10

may store their own time-stamped variables, as well as
time-stamped variables to which they are subscribed. Com-
ponents may additionally be configured to transmit request
packets via the network protocol in order to request specific

Announcement Data Packet Structure

Starting
Byte Bytes Type Content
0 16 UUID Distributed program object UUID
16 16 UUID Host executing program UUID
32 2 Unit Value type enum for the distributed program
XaObjectType object’s type on the host executing program
34 2 Unit Value type enum for how the distributed
XaObjectType program object should be represented on the
receiving executing program.
36 10 — Reserved for future use
46 2 ushort Number of time-stamped variables that
will be described.
48 16 UUID Time-stamped variable UUID for Value 1
64 2 ushort Number of following bytes that create the key
string for Value 1 (in this example, 27)
66 27 UTF-16string Key name for the time-stamped variable in the
distributed program object for Value 1
93 16 UUID Time-stamped variable UUID for Value 2
109 2 ushort Number of following bytes that create the key
string for Value 2 (in this example, 491)
111 491 UTF-16string Key name for the time-stamped variable in the

distributed program object for Value 2

As shown in the table above, it is noted herein that
time-stamped variables with string value type may include
text encoded with UTF-16 such that the number of bytes for
each time-stamped variable key may be more than the
number of text characters.

In embodiments, the stage automation server 108 is
configured to generate a distributed program object associ-
ated with the first actionable mechanism 104a, the distrib-
uted program object including the set of one or more
time-stamped variables. In this regard, the stage automation
server 108 may be configured to generate and/or store the
distributed program object received from the first actionable
mechanism 104a in memory 112. Accordingly, time-
stamped variables associated with actionable mechanism
104a (e.g., position, velocity, operational status) may be
stored in memory 112. Additionally, in some embodiments,
executing programs 106a-1065 may transmit distributed
program objects including sets of time-stamped variables
and/or individual time-stamped variables at regular and/or
irregular intervals. For example, the first executing program
106a may be configured to transmit a distributed program
object including a set of time-stamped variables associated
with actionable mechanism 1044 every ten milliseconds (10
ms). In this regard, time-stamped variables associated with
actionable mechanism 104qa (e.g., position, velocity, opera-
tional status) may be updated and stored in memory 112
every ten milliseconds. The memory 112 may be configured
to store all time-stamped variables associated with each
component of the stage automation system 100 throughout
the existence of an environment such that historical values
throughout the environment may be easily searched and
retrieved.

In the context of components (e.g., actionable assembly
102, actionable mechanism 104, executing program 106,
stage automation server 108) which subscribe to one or more
time-stamped variables of other components, the subscrib-
ing components may store time-stamped variables of the
subscribing instances in memory. In this regard, components
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time-stamped variables of other components from the stage
automation server 108. In additional embodiments, compo-
nents of the stage assembly system 100 may be configured
to sync recorded/stored time-stamped variables with those
recorded/stored in the memory 112 of the stage automation
server 108.

In embodiment, some components may “depend” on other
components or time-stamped variables such that the actions
of'a first component “depend” on a time-stamped variable of
a second component. In this example, the time-stamped
variable of the second component may be said to be “criti-
cal” to the first component. By subscribing to critical time-
stamped variables of other components, the stage automa-
tion system 100 may enable a distributed, interconnected
network of components with built-in fault states and com-
mands for coordinated motion. Furthermore, as will be
described in further detail herein, if the stage automation
server 108 and/or another component (e.g., executing pro-
gram 106, actionable mechanism 104, actionable assembly
102) is dependent on a critical packet, distributed program
object, or time-stamped variable of another critical compo-
nent within a predefined window (e.g., within a 20 ms
window), and the component does not receive the critical
packet, distributed program object, or time-stamped variable
within the predefined window, the component may be con-
figured to go into a fault state.

It is further noted herein that storing a complete (or
semi-complete) database of time-stamped variables gener-
ated by the environment throughout the duration of an event
may be particularly useful for troubleshooting. Currently,
stage automation systems do not store a complete set of data
throughout an event, such as a concert. Thus, when weird
anomalies occur during the concert (e.g., stage elevator goes
past height clamp, light strays from intended planned
course), these anomalies are difficult to troubleshoot, and
almost impossible to reproduce. By storing time-stamped
variables in a central stage automation server 108, embodi-
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ments of the present disclosure may enable improved
troubleshooting and stage automation management.

It is noted herein that components within the stage auto-
mation system 100 may each include one or more processors
and memory. For example, each executing program 106a-
1067 may include one or more processors and memory, such
that each executing program 106a-106» may be configured
to store time-stamped variables associated with coupled
components in memory. In this regard, time-stamped vari-

12

precision time protocol (PTP) may be utilized by the stage
automation server 108 in order to keep internal clocks of
respective components in sync, and to monitor network
congestion. In some embodiments, all communication (e.g.,
transmitting/receiving data packets) within the stage auto-
mation system 100 is performed over two ports, thereby
simplifying network security management. In this regard, in
some embodiments, functionality within the stage automa-
tion system 100 may be conducted over two network ports,

ables associated with a particular actionable mechanism 104 10 instead of breaking different functions of the distributed
may be stored in a memory of a coupled executing program network protocol into different network ports for different
106, the stage automation server 108, and the like. Similarly, functions. For example, data packets may include byte
each component within the stage automation system 100 identifiers associated with a particular functional purpose
(e.g., stage automation server, executing program 106) may within the stage automation system 100 that the data packet
include a message broker configured to transmit and/or 15 serves. Additionally, byte identifiers may facilitate efficient
receive time-stamped variable updates and distributed pro- decoding of the data packet.
gram objects throughout the stage automation system 100. It is contemplated herein that performing communication
In embodiments, acknowledgement (ACK) and non-ac- within the stage automation system 100 over only two
knowledgement (NACK) packets may be handled and trans- network ports may provide a number of advantages. For
mitted within the application layer of the stage automation 20 example, some conventional stage automation systems may
system 100 such that non-received data packets may be utilize a plurality of ports for different functions. For
identified by the UUID of the transmitting executing pro- example, a conventional stage automation system may uti-
gram 106 and an unsigned long integer value for the lize a 4321 port for one type of audio traffic, a 5004 port for
sequence number, and re-sent. another type of audio traffic, 8700-8708 ports for control and
Data packets including distributed program objects and/or 25 monitoring, 319 and 320 ports for time sync, as well as
time-stamped variables transmitted via the network protocol additional ports. Comparatively, by utilizing two network
of the stage automation system 100 may be used to monitor ports, the stage automation system 100 of the present
network lag and to ensure runtime configurations (e.g., disclosure may allow components within the system to more
timecodes) of each executing program 106 are in sync with efficiently and effectively identify traffic originating within
that of the stage automation server 108. For example, upon 30 the stage automation system 100, and set up firewall rules to
receiving a distributed program object from the first execut- allow (or block) particular traffic.
ing program 106, the stage automation server 108 may In some embodiments, all data packets (e.g., data packets
transmit a data packet (ACK) including a timecode of the of distributed program objects) transmitted throughout the
stage automation server 108 such that the first executing stage automation system 100 may include a common data
program 106a may ensure its timecode is in sync with that 35 header. An example data header of data packets transmitted
of the stage automation server 108. throughout the network protocol of the stage automation
In embodiments, the stage automation server 108 is system 100 is further shown in Table 3 below. In embodi-
further configured to transmit the distributed program object ments, values above the bolded dividing line may be trans-
announcement received from the first executing program mitted unencrypted, and fully repeated in the encrypted
106a to at least a second executing program 1065. In 40 packet. This may be done in order to validate that a received
embodiments, data packets (e.g., data packets of a distrib- packet is from another component within the environment
uted program object announcement) transmitted via the (e.g., another component with which the receiving compo-
network protocol of the stage automation server 108 perform nent has established a communicative coupling with). Addi-
time-syncs when passed from one component to another in tionally, transmitting unencrypted values and repeating
order to judge network jitter and latency. For example, a 45 unencrypted values in the encrypted packet may further
time synchronization protocol, such as simple network time serve to verify that the data packet received has not been
protocol (SNTP), a network time protocol (NTP), or a altered or corrupted following transmission.
TABLE 3
Data Packet Header
Starting
Byte Bytes Type Cast Content Section
0 2  String “XA” Short
2 1 Byte Packet Short
Type
3 1 Byte Component Short
Type
4 1 Byte Version Short
5 3 n/a Reserved for future use Short
8 16 UUID Sending component’s UUID Short
24 16 UUID Target component’s UUID; Short
left O for announcement packets.
40 8 Double Sender component timecode Long

when packet was sent (this
gets updated if the same
packet is re-sent because of
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TABLE 3-continued
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Data Packet Header

Starting
Byte Bytes Type Cast Content Section

lack of acknowledgement from
the receiving side)

48 8 Double Sender component timecode Long
at last timecode received from
target component (also gets
updated on re-send)

56 8 Double Last timecode received from Long
target component (gets
updated on re-send)

64 8 Ulong Packet index Long

72 8 nla Reserved for future use Long

In some embodiments, all data packets (e.g., data packets
of distributed program objects) transmitted throughout the
stage automation system 100 may include the common short
data header, as shown above in Table 3. As noted previously
herein, the short header may always be transmitted unen-
crypted to enable debugging, coarse sanity checking before
attempting decryption, and to enable traffic shaping, if
necessary. Data packets transmitted via the network protocol
throughout the stage automation system 100 may be further
shown and described with reference to FIGS. 2A-2C.

FIG. 2A illustrates an announcement data packet 202a of
a stage automation system 100, in accordance with one or
more embodiments of the present disclosure. The announce-
ment data packet 2024 may include, but is not limited to, a
short header 204 and a data payload 206a.

In order to establish communicative couplings between
various components (e.g., actionable assemblies 102, action-
able mechanisms 104, executing programs 106, stage auto-
mation server 108) a series of announcement and handshake
data packets may be exchanged between respective compo-
nents. For example, FIG. 2A illustrates an announcement
packet which may be transmitted from a first component
(e.g., “sending” component) to a second component (e.g.,
“receiving” or “target” component) in order to establish a
communicative coupling between the first and second com-
ponents. The announcement data packet 202a may be trans-
mitted and/or broadcast with a short header 202 and a data
payload 206a such that one or more receiving/target com-
ponents may communicatively couple with the sending
component. In embodiments, the data payload 206a may
include an asymmetric public key (RSA) of the sending
component such that receiving components may securely
respond with an encrypted packet that only the sending
component may decrypt.

It is noted herein that various components may transmit/
receive data packets (e.g., data packets of distributed pro-
gram objects) between one another through the stage auto-
mation server 108. For example, a first executing program
106a may transmit data packets to the stage automation
server 108, which may then forward/transmit the data pack-
ets to a second executing program 1065. In additional and/or
alternative embodiments, components may transmit/receive
data packets directly between one another. For example, as
shown in FIG. 1, the first executing program 106a may
transmit data packets to directly to the second executing
program 1065.

FIG. 2B illustrates a first stage handshake data packet
202b of a stage automation system 100, in accordance with
one or more embodiments of the present disclosure. The first
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stage handshake data packet 2025 may include, but is not
limited to, a short header 204, a long header 208, and a data
payload 20654.

Once two components have received one another’s public
RSA keys, the two components may exchange first stage
handshake data packets 2025. As noted previously herein,
the short header 204 may be transmitted unencrypted, and
repeated fully in the encrypted portion of the data packet. In
embodiments, the data payload 2065 may include an AES
symmetric key of the sending component. In this regard,
exchanging first stage handshake data packets 20256 may
allow various components to securely handshake and
exchange AES symmetric keys with one another.

FIG. 2C illustrates a second stage handshake data packet
202c¢ of a stage automation system 100, in accordance with
one or more embodiments of the present disclosure. The
second stage handshake data packet 202¢ may include, but
is not limited to, a short header 204, a long header 208, and
a data payload 206c.

Once two components have received one another’s AES
symmetric keys, the two instances may transmit a series of
second stage handshake data packets 202¢. Second stage
handshake data packets 202¢ may be transmitted between
components in order to judge network latency and jitter
between the respective components. In embodiments, the
long header 208 may include timing information (e.g.,
timecode or runtime configuration of sending component),
and may be included within all subsequent data packets in
order to continually monitor network latency and other
conditions/characteristics of the network protocol. After
AES symmetric keys have been exchanged and a commu-
nicative coupling has been established between components
of the stage automation system 100, data payloads 206¢
exchanged between the components may be trusted and
acted upon.

While FIGS. 2A-2C are shown and described in the
context of RSA/AES encryption algorithms, these are not to
be regarded as a limitation of the present disclosure, unless
noted otherwise herein. In this regard, the stage automation
system 100 may be configured to utilize any encryption
algorithms or schemes known in the art without departing
from the spirit and scope of the present disclosure.

In embodiments, a component may be configured to
transmit one or more update data packets (e.g., “XaValue-
sUpdate” data packets) when a value of one or more
time-stamped variables associated with the component is
adjusted or updated. For example, if a position of the
actionable mechanism 104¢ is updated, the first executing
program 106a may transmit one or more update data packets
to the stage automation server 108. The stage automation
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server 108 may then be configured to forward the one or
more update packets to one or more additional executing
programs 1065-106r which subscribe/depend upon the
updated value. A database of components (e.g., executing
programs 106) which subscribe/depend on the updated value
may be stored in memory 112. In this example, the one or

16

more executing programs 106 may then update distributed
program objects associated with the updated time-stamped
variable based on the one or more received update packets.
Example update data packets which may be transmitted
throughout the stage automation system 100 via the network

protocol is shown in Table 4 and Table 5 below.

TABLE 4

Update Data Packet Structure

Starting
Byte Bytes Value Type Content
0 16 UUID Time-stamped variable UUID for example
Value 1
16 1 Byte Value type for Value 1. This is redundant, since
the receiving executing program should know
what value type that time-stamped variable
UUID is, but this additionally helps reduce speed
of decoding and prevents accidental buffer
overruns that would cause the decoding process
to miss other valid data. For this example, we’ll
assume the value type of Long, which is a
signed integer that is stored with 4 bytes per
value
17 2 Ulntl6 Number of time-stamped variable slices that
are included after this (e.g., 3 slices)
19 8  Double Slice 1: Timecode
27 8 Long Slice 1: Value
35 8  Double Slice 2: Timecode
43 8 Long Slice 2: Value
51 8  Double Slice 3: Timecode
59 8 Long Slice 3: Value
67 16 UUID Value type UUID for example Value 2
83 1 Byte Value type for Value 2
84 2 Ulntl6 Number of time-stamped variable slices that
are included after this (e.g., 3 slices)
86 8  Double Slice 1: Timecode
94 8 Long Slice 1: Value
102 8  Double Slice 2: Timecode
110 8 Long Slice 2: Value
118 8  Double Slice 3: Timecode
126 8 Long Slice 3: Value
TABLE 5
Update Data Packet Structure
Starting
Byte Bytes Value Type Content
0 16 UUID Time-stamped variable UUID for example
Value 1
16 1 Byte Value Type (e.g., String)
17 2 Ulntl6 Number of time-stamped variable slices
that are included after this (e.g., 3 slices)
19 8 Double Slice 1: Timecode
27 2 Ulnt16 Slice 1: Value
29 17 Byte Slice 2: Timecode
46 8 Double Slice 2: Value
54 2 Ulnt16 Slice 3: Timecode
56 635 Byte Slice 3: Value
691 16 UUID Time-stamped variable UUID for example
Value 1
707 1 Byte Value Type (e.g., Bool)
708 2 Ulntl6 Number of time-stamped variable slices that
are included after this (e.g., 3 slices)
710 8 Double Slice 1: Timecode
718 1 Bool Slice 1: Value
719 8 Double Slice 2: Timecode
727 1 Bool Slice 2: Value
728 8 Double Slice 3: Timecode
736 1 Bool Slice 3: Value
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In particular, Table 4 illustrates an update data packet
storing multiple time-stamped variable slices (e.g., multiple
time-stamped variables for various points in time) for two
time-stamped variables including long integer value types,
and Table 5 illustrates an update data packet storing multiple
time-stamped variable slices for two time-stamped variables
including a string value type and a bool value type.

It is noted herein that transmitting update data packets
throughout the stage automation system 100 upon updating
a time-stamped variable may allow each component of the
system to maintain up-to-date information regarding other
components, such as a location, velocity, operational status,
and the like. It is further noted herein that the size of update
data packets may be limited to the maximum transmission
unit (MTU) of the network, less the known length of the
short header 204 used throughout the stage automation
system 100. Once a byte count of the data payload of an
update data packet (or other data packet) reaches a maxi-
mum length, the respective data packet may be transmitted,
and a new data packet including remaining bytes to be
transmitted may be constructed.

FIGS. 3A-3C illustrate a conceptual diagram of a time-
stamped variable with a publish variable mode and a time-
stamped variable with an omni-publish variable mode, in
accordance with one or more embodiments of the present
disclosure. In particular, FIGS. 3A-3C illustrate a first
component (Component 1) subscribing to a first time-
stamped variable of a second component (Component 2),
and updating a second time-stamped variable of the second
component (Component 2).

For example, as shown in FIG. 3A, a second component
(Component 2) (e.g., actionable mechanism 1044, executing
program 1065) may transmit a distributed program object
announcement to the stage automation server 108 including
a first time-stamped variable with a publish variable mode
and a second time-stamped variable with an omni-publish
variable mode. The stage automation server 108 may receive
the distributed program announcement, and generate/store
the distributed program announcement of Component 2 in
memory. The distributed program object announcement may
only include the names of the time-stamped variables,
variable modes, and value types. Subsequently, Component
2 may transmit update data packets (e.g., updated time-
stamped variables) which include actual values for each
time-stamped variable. As shown in FIG. 3B, a first com-
ponent (Component 1) (e.g., user interface 114, actionable
mechanism 1044, executing program 1065) may subscribe
to the distributed program object of Component 2 such that
it may view the values of the time-stamped variables.
Subsequently, Component 2 may update the value of the
second time-stamped variable with an omni-publish variable
type, and transmit update data packets to Component 2,
thereby adjusting one or more characteristics of Component
2. Conversely, in FIG. 3A, Component 2 may update the first
time-stamped variable, and update data packets may be
transmitted to Component 1 reflecting the change.

In embodiments, one or more executing programs 1065-
1067 may receive one or more data packets from the second
executing program 1065. In additional embodiments, one or
more executing programs 106a-106» may be configured to
adjust one or more time-stamped variables with an omni-
publish value type. For example, the first executing program
106a may include a motor as a first actionable mechanism
104a. The motor may include a distributed program object
including a time-stamped variable indicative of an output of
the motor, and the motor may be characterized by an
omni-publish value type such that other components of the
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system may adjust/update the motor output. In this example,
a second executing program 1065 may subscribe to and/or
receive the distributed program object of the motor (e.g.,
first actionable mechanism 104q), adjust the time-stamped
variable indicative of motor output to a new output, and
transmit one or more data packets including the updated
distributed program object and/or updated time stamped
variable to the first executing program 106. The one or more
data packets may be configured to cause the first executing
program 1064 to adjust the time-stamped variable of the
motor (e.g., first actionable mechanism 104a) of the motor’s
distributed program object in response to the received data
packets. In this regard, the first executing program 106a is
configured to adjust one or more operational characteristics
(e.g., motor output) of the first actionable mechanism 104a
associated with the at least one adjusted time-stamped
variable.

Continuing with the same example above, upon receiving
the one or more data packets including the updated distrib-
uted program object and/or updated time stamped variable,
the stage automation server 108 may also be configured to
update the time-stamped variable of the motor stored in
memory 112 based on the received data packets which may
be forwarded to the first executing program 106a.

It is noted herein that selectively adjusting and controlling
characteristics of components within the stage automation
system 100 via distributed program objects may enable
much greater flexibility and robustness than is currently
possible using conventional systems.

An example may prove to be illustrative. consider a
conventional stage automation system which includes a first
microwave from Manufacturer A. In order to start the first
microwave, a user must select the “Cook” button, then select
the “Time Cook” button, enter a time, then press and hold a
“Start” button for two seconds. The conventional stage
automation system may further include a second microwave
from Manufacturer B. In order to start the second micro-
wave, a user must enter a time, select the “Cook™ button,
then press and release a “Start” button. In order to remotely
control the first and second microwaves via a server/con-
troller, the server/controller would have to be programmed
specifically for Manufacturer A and Manufacturer B sepa-
rately such that it performs the right steps, in the right order,
in the right format, and the like. This specific programming
would be individualized on a manufacturer and product
basis. Such bespoke programming may be tedious and time
consuming, which leads to a lack of compatibility and
communication between components of the conventional
stage automation system.

Comparatively, consider the same example with the first
and second microwaves in the context of the stage automa-
tion system 100. Upon introduction into the environment of
the stage automation system 100, each microwave may
generate and transmit a distributed program object
announcement. The distributed program object of each
microwave may include a time-stamped variable with value
type string indicating the type/name of the microwave (e.g.,
“CookMeister500Microwave,”
“GEJES1072SHMicrowave”) which will be unique to each
microwave. Additionally, the distributed program object of
each microwave may allow other components update the
cook timer (e.g., time-stamped variable, double, publish),
may publish the operational state (on/off) of the respective
microwave (e.g., time-stamped variable, boolean, publish),
publish the internal temperature (e.g., time-stamped vari-
able, double, publish), and allow other components to turn
on the microwave (e.g., time-stamped variable, boolean,
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omni-publish). Upon receiving the distributed program
object of the respective microwaves, interested/dependent
components may save/generate the distributed program
object which will listen/view to the temperature of the
microwaves, and listen/view in order to update/adjust the
cook timer and on/off status. For instance, in order to turn on
either microwave, all another component would have to do
is update the time-stamped variables associated with the
cook timer and on/off status and transmit update data packets
including an updated distributed program object to the
respective microwave. Each respective microwave may then
be configured to receive the updated distributed program
objects, and adjectively alter the cook time and on/off status
of the microwave based on the updated distributed program
object and the manufacturer

As illustrated in the example above, controlling/adjusting
characteristics of components within the stage automation
system 100 via distributed program objects may enable
much greater flexibility. In particular, distributed program
objects may render manufacturer-specific processes and
instructions to be generic for all components/machines of a
particular type. For instance, updating an on/off status via a
distributed program object may be similar for all micro-
waves, no matter the manufacturer or manufacturer-specific
program instructions. In other words, the stage automation
system 100 may utilize generic updates to distributed pro-
gram objects to implement manufacturer-specific program-
ming. Controlling a component within the stage automation
system 100 therefore focuses on the type of the component
(as defined by its distributed program object), and not the
manufacturer or individual machinery associated with the
component. In this regard, embodiments of the present
disclosure may enable a stage assembly system 100 which is
hardware and protocol agnostic.

By way of another example, the processes used to release
the brake and trigger a velocity change in a Nidec M750
servo drive is very different from that of a Kollmorgen
AKD-BASIC servo drive. Distributed program objects
would include names (value type string) indicating the
different servo drives. However, the distributed program
objects of both servo drives would include similar and/or
identical time-stamped variables (e.g., on/off status, voltage,
current, output), making the distributed program objects of
each specific servo drive appear to be a generic distributed
program object for any servo drive (minus the name within
each distributed program object)

It is further noted herein that allowing components of the
stage automation system 100 to selectively adjust charac-
teristics of other components within the environment of the
stage automation system 100 may enable increasingly auto-
mated events and performances (e.g., concerts, plays, and
the like). For example, during a concert, three separate
actionable mechanisms 104a-104¢ may be required to per-
form their designated actions before a fourth actionable
mechanism 104d is to be activated to perform its designated
actions. In this example, upon performing its designated
actions (e.g., actuating to correct location, producing light,
etc.), the first actionable mechanism 104¢ may update a
distributed program object of the second actionable mecha-
nism 1045, causing the second actionable mechanism 1045
to perform its designated actions. Upon performing its
designated actions (e.g., actuating to correct location, pro-
ducing light, etc.), the second actionable mechanism 1045
may update distributed program objects of the third and
fourth actionable mechanisms 104¢-1044, causing the third
and fourth actionable mechanisms 104¢-104d to perform
their designated actions.
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In embodiments, updates to time-stamped variables and/
or distributed program objects are written in real-world
units, such that the position, velocity, acceleration, and the
like, of each component of the stage automation system 100
is known with respect to 3D space. As noted previously,
positional information (e.g., position, velocity, acceleration,
deceleration, position clamps, and the like) may be selected
and stored within the system with respect to a defined
reference point.

In some embodiments, actions performed within the stage
automation system 100 may be limited or controlled by
“conditions.” The term conditions may be used to refer to
logic statements which limit actions and/or cause certain
actions to occur within an environment. For example, a
condition may state that if a certain time-stamped variable or
statement of time-stamped variable comparisons is true,
limit the velocity of actionable assembly 102a to 1 m/s. By
way of another example, a condition may be configured to
fire a command (e.g., update a time-stamped variable to
initiate an action) on the rising edge of a certain time-
stamped variable. In embodiments, a database of conditions
associated with an environment may be stored in memory
112 of the stage automation server 108 and/or memory of
components within the stage automation system 100.

In some embodiments, a show or event (e.g., concert,
play, sporting event) may be programmed in terms of cue
sheets, cues, and commands. A cue sheet may be stored in
memory 112, wherein the cue sheet includes a list of one or
more cues and/or commands. A command may be used to
refer to an action which an actionable mechanism 104 and/or
actionable assembly 102 may take. For example, commands
may include “move to x position,” “sync position with
another actionable mechanism 104 and/or actionable assem-
bly 102,” move to x velocity and hold x velocity,” move
along a predefined series of positions or velocities,” “follow
the position value passed via Open Sound Control (OSC) or
Art-Net,” “wait x seconds, then move to y position,” and the
like. A cue may be used to refer to multiple actions which are
executed on one or more actionable mechanisms 104 and/or
actionable assemblies 102. Thus, a cue may refer to a group
of one or more commands.

In practice, a memory 112 of the stage automation server
108 may be configured to store a cue sheet including a
plurality of cues and/or commands, often the cues/com-
mands for an entire show. For example, the stage automation
server 108 may be configured to store a cue sheet in memory,
wherein the cue sheet includes a first command executable
by the first actionable mechanism 104q, and a second
command executable by the second actionable mechanism
1045. Cues and commands may be linked to the particular
component (e.g., actionable assembly 102, actionable
mechanism 104, executing program 106) configured to
execute them based on the UUID of the respective compo-
nent.

For instance, the stage automation server 108 may be
configured to transmit one or more data packets associated
with a first command to the first executing program 106a,
wherein the first executing program 106a is configured to
adjust at least one time-stamped variable of a first actuatable
mechanism 104« in order to execute the first command. The
stage automation server 108 may be further configured to
transmit one or more data packets associated with the second
command to the second executing program 1065, wherein
the second executing program 1065 is configured to adjust
at least one time-stamped variable of the second actuatable
mechanism 1044 in order to execute the second command.
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The stage automation server 108 may include a “Cue-
Manager.” The CueManager may include a module or a set
of program instructions executable by the one or more
processors 110. The CueManager may be configured to hold
commands which are currently running in a position denoted
“CommandExecutor,” and commands which are to be run
subsequently in a position denoted “CommandStandby.” To
initiate a cue or command, the CueManager may receive a
UUID of an existing cue or command. The CueManager
may then make a copy of the cue/command, and put its
contents into CommandStandby position. For each execut-
ing program 106 in the environment, the CueManager may
be configured to take the first cue/command in the Com-
mandStandby position and move it to the CommandExecu-
tor position in order to initiate/execute the cue/command on
its intended executing program. Once the cue/command in
the CommandExecutor position completes, the CueManager
may remove it from the CommandExecutor position, and
move the next cue/command (if any) from the Command-
Standby position in to the CueExecutor position.

In embodiments, some cues/commands may keep a com-
ponent (e.g., executing program 106, actionable mechanism
104, actionable assembly 102) active until certain criteria or
conditions are met. For example, a command may keep a
component active until a timer has expired, a position of
another component is met, or a particular time-stamped
variable reaches a particular value. In this regard, the Cue-
Manager (e.g., stage automation server 108) may not deac-
tivate a command in the CommandExecutor position until
the command is complete. In other embodiments, some
components may be put into a fixture mode to be controlled
by a lighting console or other external control. For example,
some components may be put into a fixture mode such that
they are controlled via the user interface 114. Commands in
a fixture mode may stay active until they are manually
cleared. The stage automation server 108 of the environment
may listen to the Art-Net/Streaming Architecture of Control
Networks (SACN) universe/multiverse for transporting
frames in the DMX universe/multiverse, and can make
executing programs 106 respond to live commands to chase
a position command from Art-Net. Each executing program
106 may include a starting address in the DMX multiverse
and the OSC namespace.

As shown in FIG. 1, the stage automation system 100 may
further include a user interface 114. The user interface 114
may include a user input device 1167 and a display device
118. The user interface 114 may include any user interface
device known in the art including, but not limited to, a
desktop computer, a laptop, a mobile device (e.g., smart-
phone, tablet), a wearable device, and the like. The display
device 118 may be configured to display data/information of
the stage automation system 100 to a user. In this regard, a
user may be able to view characteristics of components
within the stage automation system 100 (e.g., distributed
program objects, time-stamped variables for position, veloc-
ity, operational state, and the like) via the user interface 114.

In embodiments, the user input device 116 may be con-
figured to receive one or more input commands from a user
responsive to data shown on the display device 118. For
example, a user may be able to input various commands,
conditions, and the like, via the user interface 114. By way
of another example, a user may be able to run components
(e.g., actionable assemblies 102, actionable mechanisms
104) of the stage automation system 100 in a “jog mode.”
The term “jog” may be used to refer to user-controlled
actions (e.g., user-input position, user-input velocity, user-
input command to move forward or backwards). For
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example, an executing program 106 may be run in a jog
mode, live-chasing either a position, velocity, or torque
target with minimum/maximum position clamps, velocity
clamps, and acceleration clamps set by settings of the
executing program 106, parameters associated with a com-
mand, or a defined condition. Actions of a particular com-
ponent may be limited to whichever parameters (e.g.,
executing program 106 settings, parameters associated with
a command, a defined condition) are most restrictive.

For instance, the stage automation server 108 may be
configured to receive one or more input commands (e.g.,
data packets) from a user interface 114, and adjust at least
one time-stamped variables of a set of one or more time-
stamped variables of a distributed program object stored in
memory 112 based on the one or more input commands
received from the user interface 114. Subsequently, the stage
automation server 108 may be configured to transmit one or
more update data packets to the component associated with
the updated distributed program object in order to imple-
ment the action, command, or condition based on the
received input commands.

In some embodiments, the stage automation system 100
may implement the DMX multiverse which receives data in
and transmits data out to a DMX, Art-Net, and/or RDM
network. The DMX multiverse may also contain configu-
ration linking UUIDs of various executing programs 106 to
starting addresses and fixture styles in the multiverse, a
configuration that is static and persistent in the configuration
of the environment. In embodiments, an executing program
106 of an environment of the stage automation system 100
may be configured to listen to a DMX512 source (e.g.,
RS-485, DMX512, Art-Net, DMX over sACN), and trans-
mit the universe values as data packets over the network
protocol to the stage automation server 108. The universe
values may be timestamped with the time of capture (similar
to time-stamped variables), and marked with the UUID of
the physical device (e.g., RS-485, DMX512) or the Art-Net
universe the values originated from. The multiverse object
will by default consume any incoming DMX data from any
executing program 106 that has a DMX source configured
on it, and will broadcast out any DMX out from the
multiverse any DMX output configured in the environment,
either by DMX512 or a configured Art-Net/sACN network
endpoint.

In embodiments, the stage automation system 100 may be
configured to support OSC in and out of the environment of
the stage automation system 100. By default, the fixture
mode for OSC listens to a predefined address prefix for each
actionable assembly 102/actionable mechanism 104, and
transmits status on a predefined address prefix. The address
prefix can be the UUID of the actionable assembly 102/
actionable mechanism 104 or another name. In additional
embodiments, the stage automation system 100 may be
configured to support PosiStageNet input and output. By
default, the system will consume any PSN data on the
network and create and update single-point geometry object
for each unique tracker fount. It will also publish current
point data for all actionable assemblies 102/actionable
mechanisms 104 with known 3D positions to the network
protocol (e.g., to the stage automation server 108).

In embodiments, a fixture move command may instruct an
actionable assembly 102/actionable mechanism 104 to make
its best effort to hit a requested position target channel,
within set clamps and limits in addition to the ones set in the
DMX fixture. Each actionable assembly 102/actionable
mechanism 104 has the option to configured a starting DMX
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multiverse and address, and whether it functions in a “Sim-
plified” or “Complete” mode. This may be further under-
stood with reference to Table 6 and Table 7. Table 6

24

illustrates a simplified one-dimensional (1D) position jog
fixture profile, and Table 7 illustrates a complete one-
dimensional (1D) position jog fixture profile.

TABLE 6

Simplified 1D Position Jog Fixture Profile

Channel Purpose

Value

Note

1 Enable

255 = enable; 0 =
disable
2 16-bit position Byte
target course
3 16-bit position Ulntl6
target fine
4 8-bit velocity Double
clamp
5 8-bit acceleration Long
clamp
6 8-bit deceleration Double
clamp
7 Corruption Long
Check 1
Double

8 Corruption

Check 2

Permits motion for component. Fixture
Move Command may optionally activate
or deactivate the component depending
on component type and setting.
Combined 16-bit value range is
normalized between —32,768 and 32,767,
representing mm for linear axes, and
tenths of degrees for rotational axes.
Value range between 0 and 255
representing cmy/sec for linear axes, and
degrees/sec for rotational axes. Applies
to positive and negative velocity.

Value range between 0 and 255
representing cmy/sec for linear axes, and
degrees/sec for rotational axes. Applies
to positive and negative velocity.
Evaluation of binary 10101011;
component will fault if not set.
Evaluation of binary 01010100;
component will fault if not set.

TABLE 7

Complete 1D Position Jog Fixture Profile

Channel Purpose Value Note

1  Enable 255 = Permits motion for component. In
enable; 0 = this fixture mode, servo & brake
disable activation will follow the jog mode

selection.

2 Jog mode select 0 = none; None is functionally equivalent to a
24 = deactivate request. Position will have
position; 36 =  the component chase the position
velocity target, and velocity will have the

component chase the velocity target.

3 16-bit position Combined 16-bit value range is

target course normalized between -32,786 and
32,767, representing mm for linear

4 16-bit position axes, and tenths of degrees for

target fine rotational axes.

5 16-bit velocity Value range between 0 and 255

target course representing crm/sec for linear axes,
and degrees/sec for rotational axes.

6 16-bit velocity Applies to positive and negative

target fine velocity.

7 16-bit velocity Value range between 0 and 65,534

clamp coarse representing mm/sec for linear axes,

8  16-bit velocity and degrees/sec for rotational axes.

clamp fine Applies to positive and negative
velocity.

9 16-bit acceleration Value range between 0 and 65,534

clamp coarse representing mm/sec™2 for linear
10 16-bit acceleration axes, and tenths of degrees/sec™2
clamp fine for rotational axes.
11 16-bit deceleration
clamp coarse
12 16-bit deceleration
clamp fine
13 16-bit position limit Combined 16-bit value range is
maximum coarse normalized between —32,786
14 16-bit position limit and 32,767, representing mm for linear
maximum coarse axes, and tenths of degrees for
15 16-bit position limit rotational axes.
minimum coarse
16 16-bit position limit
minimum coarse
17 Corruption Check 1 171 Evaluation of binary 10101011;

component will fault if not set.
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TABLE 7-continued
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Complete 1D Position Jog Fixture Profile

Channel Purpose Value Note

18  Corruption Check 2 84

Evaluation of binary 01010100;

component will fault if not set.

FIG. 4 illustrates a graph 400 depicting position and
velocity limits of a component executing commands, in
accordance with one or more embodiments of the present
disclosure. As noted previously herein, commands and
actions implemented by various components (e.g., action-
able mechanism 104, actionable assembly 102) may be
constrained by various parameters, including condition
statements, position clamps, velocity clamps, acceleration/
deceleration clamps, and the like.

For example, graph 400 is a visual representation of
position of an actionable assembly 102 over time. The
actionable assembly 102 may start at an initial start position
301 at an initial time (t,), and end at an end position 311 at
a final time (t). The movement of the actionable assembly
102 may be constrained by a maximum position clamp 403a
and a minimum position clamp 4035 such that the actionable
assembly 102 may not move outside of the respective
position clamps 403a, 4035. Additionally, the movement of
the actionable assembly 102 may be constrained by a
velocity clamps 413 indicated by the slanted/diagonal lines.
In embodiments, the graph 400 may be an example depiction
of the position of the actionable assembly 102 displayed to
a user via the display device 118.

A cue/command for the actionable assembly 102 may
include a set of position targets 402a-402» which the action-
able assembly 102 is to hit throughout execution of the
cue/command. As shown in FIG. 4, if one or more command
positions 402d, 402¢ are outside of the range of values
determined by the position clamps 403a, 4035, the action-
able assembly 102 may move until the position clamp limit
(e.g., minimum position clamp 403b, clamped position
target 407), then continue in sync with the intended com-
mand positions once the command positions return to the
range of values determined by the position clamps 403a,
4035.

In embodiments, the stage automation system 100 may
include a 3D geometry system which functions similarly to
Cinema 4D/Unity style hierarchies, with parent/child rela-
tionships, and additional attributes to an object that can link
it to other objects’ influence. All components within an
environment may have an associated geometry tree. In its
simplest configuration, this tree has an origin position &
orientation, and a childed object for static geometry, a null
object driven by the axis’ positionMeasured, and a childed
object with the driven geometry. For example, a stage
elevator (e.g., actionable assembly 102) may include support
structure that would not move, and the orientation for the
driven object would be at the top pointing down. Negative
position values on the component move the physical plat-
form down to the ground; when the component moves, the
3D object also moves to mimic that. The component also
automatically creates representative geometry to show the
physical position limits configured on the component. The
PSN object has its own associated geometry tree, and it
creates & updates child objects for each “show” ID and
object ID it receives network data for. Each component (e.g.,
actionable mechanism 104, actionable assembly 102) by
default publishes its origin and driven position to the PSN
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network, and other geometry objects in the environment
hierarchy can also be tagged to send their position out to the
PSN network. The stage automation server 108 may contain
3D models for each make/model of component, and models
can be imported to attach to custom components.

FIGS. 7A-7E illustrate a three-dimensional (3D) tracking
system of a stage automation system, in accordance with one
or more embodiments of the present disclosure.

It is noted herein that measurement of an environment and
understanding of the position and orientation of machinery/
components (e.g., actionable mechanism 104, actionable
assembly 102) in a 3D space is critical to being able to
program complex motion and ensure safe operation around
other elements and people. In embodiments, the 3D tracking
system of the stage automation system 100 may include a
plurality of anchor constellations 700 to automatically con-
figure the RF tracking system, as shown in FIG. 7A. In
embodiments, a single anchor constellation 700 may include
a plurality of transponders 702a-7024. GUIDs and/or
UUIDs for the anchor constellation 700 and each transpon-
der 702a-702r may be stored in memory 112. Each anchor
constellation 700 and transponder 702a-702d may addition-
ally include a distributed program object which may be
transmitted throughout the system. In additional and/or
alternative embodiments, an anchor constellation 700
including a plurality of transponders 702 may include a
single distributed program object such that the anchor con-
stellation 700 is regarded as one single component.

In embodiments, the plurality of transponders 702a-702n
may be arranged on a a stiff, static frame 701 (e.g., 3D
pyramid). Locations of each the anchor constellation 700 on
an event stage may be known, and the heights and distances
between each of the transponders may also be known and
stored in memory 112. For example, as shown in FIGS. 7B
and 7C, a location/position of each anchor constellation
700a-700d of a plurality of anchor constellations 700a-7004
may be stored in memory 112. Similarly, the height of each
transponder 702 and distances between each transponder
702 may be stored in memory 112. As shown in FIGS.
7B-7C, an environment may include multiple anchor con-
stellations 700, multiple actuators (e.g., multiple actionable
mechanisms 104a-1044), and an object moved by the actua-
tors (e.g., chain motor actuatable mechanisms 102a-1024).
Trackers 704 may be attached to actuators (e.g., actionable
mechanisms 104) and the objects to be moved (e.g., action-
able assemblies 102), as shown in FIGS. 7D-7E. A database
associating each components UUID to the serial number(s)
of the associated trackers may be stored in memory 112.
Additionally, the geometry of the actuator in relationship to
the trackers may also be stored in memory 112.

By associating UUIDs with the respective components,
and associating commands/cues with the UUIDs, the stage
automation system 100 may be configured to link particular
cues/commands to the associated components to which they
are intended. For example, actuators in FIGS. 7C-7D can be
identified and operated by their UUID. In this example, an
optical scanner on a control device can be used to read a
hoist’s UUID encoded in a 2D barcode like a QR code, to
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select it for immediate operation. Physical actuators may
also be identified by a unique, persistent UUID that allows
the stage automation server 108 to look up what it is, how
to configure the drive it’s attached to, and how to display it
on the user interface 114.

In embodiments, by transmitting signals between the
respective trackers 704 and the transponders 702 of each
anchor constellation 700, the 3D position of each component
of the stage automation system 100 may be triangulated. 3D
positional information may be determined using any math-
ematical formula, algorithm, or technique known in the art
including, but not limited to, time-of-flight determinations,
inertial measurement units (IMU), and barometric sensors,
received signal strength indicator (RSSI) wvalues. For
instance, the stage automation system 100 may be config-
ured to utilize RSSI values to reject potentially bad data
packets from nodes which may be obstructed, or for signals
which have reflected off other surfaces.

In embodiments, movement cues/commands for the
sphere (e.g., actionable assembly 102 in FIGS. 7B-7C) may
be written in relation to the environment’s origin. With
knowledge of where all of the hoists and their hooks are, the
stage automation server 108 may be configured to selec-
tively move/actuate the suspended sphere anywhere within
the area between the hoists. The operator doesn’t need to
individually program the motion of each hoist, just program
the motion the sphere itself. In embodiments, actionable
mechanisms 104 and/or actionable assemblies 102 may be
configured to receive and/or execute commands in 1D
and/or 3D space, dependent upon the physical attributes of
the respective actionable mechanisms 104 and/or actionable
assemblies 102. Actionable mechanisms 104 and/or action-
able assemblies 102 may continuously identify their physi-
cal position by transmitting RF positioning feedback to the
stage automation server 108 and/or by measurements
entered by an operator via user interface 114.

For example, as shown in FIG. 7B, an actionable assem-
bly 102 may be physically actuated (e.g., moved) by four
separate actionable mechanisms 104a-104d (e.g., hoists
104a-1044). In this example, commands to move the action-
able assembly 102 may be written in the context of 3D space
that move the actionable assembly 102 itself, and the stage
automation server 108 may transmit jog commands to each
respective hoist 104a-1044d to achieve the 3D command of
the actionable assembly 102. For instance, a user may input
a new position for the actionable assembly 102 via the user
interface 114. The stage automation server 108 may then
calculate the required hoist actuation to achieve the new
position indicated by the 3D command, and transmit 3D
commands (e.g., jog commands) to each of the hoists
104a-10d. Upon receiving the 3D commands (e.g., jog
commands) for the new position of the actionable assembly
102, each hoist 104a-104d may jog the hoist to the deter-
mined position. Such calculations may be carried out many
times a second, jogging the position of each hoist 104a-1044
to achieved desired hoist positions required for the 3D
positioning of the actionable assembly 102. In additional
and/or alternative embodiments, the calculations required to
achieve the positions associated with the user commands
may be carried out by processors of the hoists 104a-104d
themselves. By writing cues/commands in the context of
distributed program objects, the stage assembly system 100
may be configured to command motion of the hoists to
match the length that it simulates in 3D space.

It is noted herein grouping a plurality of actionable
mechanisms 104 together to move one or more actionable
assemblies 102 (e.g., FIG. 7B) may provide a number of
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benefits. For example, as shown in FIG. 7B, if an operator
chooses to move a single actuatable mechanism 104a (hoist
104a) individually instead of as part of the group, the chains
of the hoist 104a may slack, resulting in the other three
hoists 1045-104d now holding the majority of the weight of
the object. In this example, if the operator then sends a 3D
move command to the actionable assembly 102, the stage
automation server 108 may be configured to first bring all
the actionable mechanisms 104 (e.g., hoists 104a-104d)
back into a stable position that it expects it to be in (e.g.,
remove the slack from the hoist 104a), then continue with
the move.

It is further herein that writing commands in the context
of'the actionable assembly 102 being moved, rather than the
actionable mechanisms 104 used, can be applied in other
contexts. For example, a gantry track (e.g., actionable
mechanism 104) and a plurality of hoists (e.g., actionable
mechanisms 104) may be used to operate cooperatively in
order to selectively actuate/move an actionable assembly
102. In this example, commands may be written for the
actionable assembly 102 as distributed program objects such
that the cues and commands for the actionable assembly 102
are written for the actionable could be written for the
actionable assembly 102 itself, instead of the gantry track
and/or hoists individually.

It is noted herein that accurate positional measurements
by the operator or automatic measurements by a 3D tracking
system may be used for several purposes including, but not
limited to: accurate visualization of the 3D environment to
a user via the user interface 114; cues can be written to move
objects instead of individual actuators; interfaces can show
contextual information on objects or devices they’re in
proximity to or aimed at; augmented reality displays can
overlay contextual information on real objects or actuators;
actuators can automatically move, level, or tilt objects to
predetermined positions without manual human control;
objects and actuators can programmatically respond to
motion of actors or other non-actuated props; actuators can
be automatically assigned to the system via either known
proximity of their end effectors; the system can automati-
cally set static or dynamic limits based on known positions
of other objects or people.

FIGS. 5-6E-2 illustrate conceptual diagrams of a stage
automation system 100, in accordance with one or more
embodiments of the present disclosure.

In particular, the conceptual diagrams illustrated in FIGS.
5-6E-2 illustrate how the software components of the stage
automation system 100 connect to and control devices (e.g.,
actionable mechanisms 104, actionable assemblies 102), in
a standalone configuration. FIGS. 5-6E-2 further demon-
strate how the distributed program objects within the stage
automation system 100 software architecture relate to each
other. It is noted herein, however, that FIGS. 5-6E-2 are
provided solely for example, and are not to be regarded as
limiting, unless noted otherwise herein.

The host operating system may include an operating
system that contains normal operating system components
and functionality including, but not limited to, file system or
persistent memory (2), a network stack (3), serial ports (4),
RAM, a processor, etc. In some embodiments, the stage
automation system 100 may be deployed on some flavor of
Linux or Windows on bare metal or a virtual machine, but
this environment could also be a Docker container, another
generalized container, or an embedded system on a chip with
a simple bootloader and operating system-like functionality.

The database file may include persistent storage capable
of storing multiple tables of randomly accessible informa-



US 11,385,610 B2

29

tion. This may include a SQLite database file, but could also
include a Postgres database managed by a separate Postgres
server process, multiple flat CSV files, or key/value pairs
stored in EEPROM on an embedded system on a chip. This
is not necessarily a requirement for a functioning executing
program 106, but may be required for many core features.

“network endpoint” may include an IP address that can
send and receive normally-switched ethernet packets on a
network, or to a single other networked device. The “end-
point” could be a physical RJ-45 ethernet jack with a single
1P address, a single IP address amongst many on a physical
RJ-45 port, a fiber-optic port, a virtual port on a virtual
switch, a WiFi card, a single IP address on multiple bonded
ethernet ports, or any other common computer science
concept of a network endpoint. Similarly, a “serial port” may
include any serial port commonly known in the art. In
practice, this serial port and the physical medium (10) may
include a physical DB-9 connector on a box, a USB to serial
device, or a virtual serial port shared via another process
across a network. It could function as half-duplex or full
duplex, with any common state signaling that accompanies
common serial standards like RS-232, RS-485, CANbus/
CANopen, or UART. Typically, this will present itself to the
operating system as a /dev/tty* device on Linux, a COM
device on Windows, or a serial device object in an embedded
system.

The TCP/IP network may include be a wide variety of
actual configurations understood as a “network” with a
variety of transport types (9) between/amongst devices,
from a single ethernet cable direct to another device, a
switched network, a connection passed through a VPN or
WiFi network, or any other common computer science
understanding of a computer network that switches and
broadcast packets to devices. In embodiments, the stage
automation system 100 may not require any abnormal
configurations of a TCP/IP network, and any computer
network known in the art may be configured to facilitate
communication within the stage automation system 100.

In embodiments, a “servo drive” in may include any
device known in the art configured to provide power and
control to machinery (e.g., actionable mechanism 104,
actionable assembly 102). In the context of the stage auto-
mation system 100, servo drives and/or servo motors may be
used to provide predictable closed-loop control. For the
purposes of the present disclosure, it is contemplated that
predictable, closed-loop control may be applied to any
device which is used to achieve a particular location, speed,
temperature, or the like. In this regard, any reference to
“servo drive” may additionally and/or alternatively be
regarded as applying to other mechanisms including, but not
limited to, motors (e.g., DC motors, AC motors), hydraulics,
pneumatics, and the like. this example, the servo drives may
include identical models of a servo drive connected by
different communications technologies, or could be entirely
different models of servo drive. FIGS. 5-6E-2 illustrated the
multiple devices (e.g., servomotor, brake, limit switches)
connected to a single servo drive, which are required to
make an actionable mechanism 104/actionable assembly
102. In embodiments, a servo drive may include its own
capability to provide power to control motion on the
machine (e.g., actionable mechanism 104, actionable assem-
bly 102), and the stage automation system 100 provides it
configuration and commands to set it up, and to control it
from the stage automation system 100. The stage automation
system 100 may regularly poll the drive for information on
its status, its configuration, and the status of all its connected
peripherals.
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The “Instance” may include the executing programs 106,
running on a single operating system (e.g., environment,
operating system, a Docker-like container, a virtual
machine, or an embedded system). The instance may gen-
erate its own unique identifier when it’s launched, may keep
track of its own internal time since it was launched, and
manage the distributed program objects and values within
itself. A stage automation system 100 could run off of a
single Instance (e.g., executing program) that is able to
connect directly to all the machinery, or system could run off
of multiple executing programs 106 distributed across the
network managing multiple machines. All of the arrows
drawn within objects enclosed in the Instance box represents
communication directly between software objects.

The concept of the “Environment” in the stage automation
system 100 encompasses the configuration of the system,
and all of the components able to communicate with each
other. A running Instance (executing program 106) of the
software will hold information about the Environment, and
multiple Instances across the network will hold shared
information about the Environment and be part of the
Environment.

The Database object handles communication with the
underlying database system as described previously herein.
It handles logging many things throughout the Instance’s
lifecycle, like XaObjects, what XaValues the XaObjects are
linked to, the time & value of variables within those XaVal-
ues, network packets, debug information, etc. It also reads
data for loading saved EnvironmentConfiguration, servo
drive configuration for uniquely identified Axes, XaValue
history within the Instance or from previous sessions, etc.
Everything else in the Instance calls functions within the
Database object to request it save or read data, and the
Database object abstracts the underlying database file sys-
tem.

The NetworkManager handles communication on the
TCP/IP network on the operating system for the core Exato
systems. Anything to and from Exato’s core distributed
network system passes through it, and it delivers incoming
packets to the objects that need it within the Exato Instance,
like the XaValueManager. The XaValueManager is a mes-
sage broker that monitors all active XaValues in the
Instance, whether their source is this Instance or others on
the network (not pictured in this logical diagram).

The GeometryManager translates position data of axes
into 3D information, based on measured or inferred 3D
position and orientation of those axes in real space. It also
works with the CueManager to translate object-based cueing
into jog commands for individual axes, based on where they
are in space. For instance, four hoists may be configured to
lift a set piece; those four hoists may be at different heights
depending on the theater. The operator writes cues for the set
piece to go to various heights, and the GeometryManager
translates the requested position of the set piece into com-
mands for the hoists to follow, based on their measured
height above the stage that day. The Log is a catch-all of
messages from software objects within Exato, with various
levels of severity that can be filtered by the operator. All of
the Log messages are sent to the Database (21), and option-
ally to the user interface.

The AxisManager holds all of the automation axis objects
in the Instance. It monitors the state of all of them, and
presents them to be easily accessible and searched by other
objects within the Instance. Its configuration (what Axes it
contains, what real AxisDevices those contain & their con-
figuration, etc) may be defined by the EnvironmentConfigu-
ration loaded from the Database or saved to the Database.
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The CueManager holds the Environment CueSheet(s),
and all of the Cues and Commands contained therein. It also
holds the CueExecutor, that calls the AxisManager to call
functions on individual axes to make them do things
described in Commands. It sequences Commands within
Cues; a Cue could hold multiple Commands for an axis that
need to run sequentially. Its configuration may also be
contained in the EnvironmentConfiguration, and may be
loaded from or saved to the Database.

An Axis is an object that contains both an AxisSim and
optionally an AxisDevice object. The AxisSim virtually
simulates how a real device would respond to configurations
and cues, for offline programming and setup of a show. This
is an XaObject, which in a distributed network environment
would share its existence and associated XaValues with
other Instances. In a standalone configuration like this, the
XaValues would still exist and log their time & values in the
Database.

In this diagram, the AxisDevice connects directly to the
operating system’s network stack to connect to the servo
drive it monitors and controls.

FIG. 8 illustrates a flowchart of a method 800 for oper-
ating a stage automation system 100, in accordance with one
or more embodiments of the present disclosure. It is noted
herein that the steps of method 800 may be implemented all
or in part by stage automation system 100. It is further
recognized, however, that the method 800 is not limited to
the stage automation system 100 in that additional or alter-
native system-level embodiments may carry out all or part of
the steps of method 800.

In a step 802, a distributed program object announcement
is received from a first executing program 106a. For
example, the stage automation server 108 may receive a
distributed program object from the first executing program
106a. The distributed program object may include a set of
one or more time-stamped variables associated with a first
actionable mechanism 104a selectively controlled by the
first executing program 106a.

In a step 804, a distributed program object associated with
the first actionable mechanism is generated. For example,
the stage automation server 108 may be configured to
generate and store a distributed program object associated
with the first actionable mechanism 104a in memory 112,
wherein the distributed program object includes the set of
one or more time-stamped variables.

In a step 806, the distributed program object is transmitted
to a second executing program. For example, the stage
automation server 108 may be configured to transmit a
distributed program object announcement to the second
executing program 1065. Subsequently, the one or more data
packets are received from the second executing program.
For example, the second executing program 1065 may
update/adjust one or more time-stamped variables of the
distributed program object, and transmit one or more update
data packets to the first executing program 106a via the stage
automation server 108.

In a step 808, at least one time-stamped variable of the
distributed program object is adjusted based on the one or
more received data packets. For example, upon receiving the
one or more update data packets from the second executing
program 1065, the stage automation server 108 may be
configured to adjust the one or more time-stamped variables
adjusted by the second executing program 1065 based on the
received update data packets.

In a step 810, one or more data packets are transmitted to
the first executing program indicative of the at least one
adjusted time-stamped variable. For example, the stage

10

15

20

25

30

35

40

45

50

55

60

65

32

automation server 108 may be configured to forward the one
or more update data packets indicative of the one or more
updated time-stamped variables.

In a step 812, one or more characteristics of the first
actionable mechanism associated with the at least one
adjusted time-stamped variable are selectively adjusted. For
example, the first executing program 1065 may be config-
ured to generate one or more control signals configured to
selectively adjust one or more operational characteristics of
the first actionable mechanism 104a based on the one or
more updated time-stamped variables.

It is believed that the present disclosure and many of its
attendant advantages will be understood by the foregoing
description, and it will be apparent that various changes may
be made in the form, construction and arrangement of the
components without departing from the disclosed subject
matter or without sacrificing all of its material advantages.
The form described is merely explanatory, and it is the
intention of the following claims to encompass and include
such changes.

What is claimed:
1. A stage automation system, comprising:
a first executing program configured to selectively control
a first actionable mechanism;
a second executing program configured to selectively
control a second actionable mechanism; and
a stage automation server communicatively coupled to the
first executing program and the second executing pro-
gram via a network protocol, the stage automation
server including one or more processors configured to
execute a set of program instructions stored in memory,
the set of program instructions configured to cause the
one or more processors to:
receive, from the first executing program, a distributed
program object announcement including a set of one
or more time-stamped variables associated with the
first actionable mechanism;
generate a distributed program object associated with
the first actionable mechanism, the distributed pro-
gram object including the set of one or more time-
stamped variables;
transmit the distributed program object announcement
to the second executing program;
receive one or more data packets from the second
executing program;
adjust at least one time-stamped variable of the distrib-
uted program object stored in memory based on the
one or more received data packets; and
transmit one or more data packets to the first executing
program,
wherein the one or more data packets are configured to
cause the first executing program to adjust the at least
one time-stamped variable of the distributed program
object associated with the first actionable mechanism,
wherein the first executing program is configured to adjust
one or more characteristics of the first actionable
mechanism associated with the at least one adjusted
time-stamped variable.
2. The stage automation system of claim 1, wherein the
stage automation server is further configured to:
receive one or more data packets from the first executing
program; and
adjust at least one time-stamped variable of the set of one
or more time-stamped variables of the distributed pro-
gram object stored in memory based on the one or more
received data packets.
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3. The stage automation system of claim 1, wherein at
least one of the first actionable mechanism or the second
actionable mechanism comprises at least one of a motor, a
linear motor, a brake, a valve, a solenoid, a power source, or
a light.

4. The stage automation system of claim 1, wherein at
least one of the first actionable mechanism or the second
actionable mechanism is configured to adjust one or more
characteristics of one or more actionable assemblies.

5. The stage automation system of claim 4, wherein the
one or more actionable assemblies comprise at least one of
a stage elevator, a lineset, a screen track, a winch, or a
turntable.

6. The stage automation system of claim 1, wherein the
distributed program object announcement includes a set of
one or more value types defining the set of one or more
time-stamped variables such that each time-stamped vari-
able of the set of one or more time-stamped variables is
defined by a value type of the set of one or more value types.

7. The stage automation system of claim 6, wherein the set
of'one or more value types includes at least one of a Boolean
value type, a long integer value type, a double float value
type, a string value type, or a byte array value type.

8. The stage automation system of claim 1, wherein the
distributed program object announcement includes a set of
one or more variable modes defining the set of time-stamped
variables such that each time-stamped variable of the set of
one or more time-stamped variables is defined by a variable
mode of the set of one or more variable modes.

9. The stage automation system of claim 8, wherein the set
of one or more variable modes includes at least one of a
publish variable mode, a subscribe variable mode, or an
omni-publish variable mode.

10. The stage automation system of claim 1, wherein the
distributed program object announcement includes a set of
one or more value types defining the set of time-stamped
variables such that each time-stamped variable of the set of
one or more time-stamped variables is defined by a value
type of the set of one or more value types.

11. The stage automation system of claim 1, wherein each
time-stamped variable of the set of one or more time-
stamped variables includes a universally unique identifier
(UUID).

12. The stage automation system of claim 1, wherein the
network protocol comprises at least one of a transmission
control protocol (TCP) network or a serial network.

13. The stage automation system of claim 1, wherein the
stage automation server is further configured to:

receive one or more input commands from a user inter-
face; and

adjust at least one time-stamped variables of the set of one
or more time-stamped variables of the distributed pro-
gram object stored in memory based on the one or more
input commands received from the user interface.

14. The stage automation system of claim 1, wherein the
set of one or more time-stamped variables associated with
the first actionable mechanism define one or more opera-
tional characteristics of the first actionable mechanism.

15. The stage automation system of claim 14, wherein the
one or more operational characteristics comprise at least one
of'an operational state, a location, a velocity, an acceleration,
a fault state, or a voltage of the first actionable mechanism.
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16. The stage automation system of claim 1, wherein the

stage automation server is further configured to:

store a cue sheet in memory, the cue sheet including a first
command executable by the first actionable mecha-
nism, and a second command executable by the second
actionable mechanism.

17. The stage automation system of claim 16, wherein the

stage automation server is further configured to:
transmit one or more data packets associated with the first
command to the first executing program, wherein the
first executing program is configured to adjust at least
one time-stamped variable of the first actuatable
mechanism in order to execute the first command; and
transmit one or more data packets associated with the
second command to the second executing program,
wherein the second executing program is configured to
adjust at least one time-stamped variable of the second
actuatable mechanism in order to execute the second
command.
18. A stage automation system, comprising:
a stage automation server communicatively coupled to
one or more executing programs via a network proto-
col, the stage automation server including one or more
processors configured to execute a set of program
instructions stored in memory, the set of program
instructions configured to cause the one or more pro-
cessors to:
receive, from a first executing program, a distributed
program object announcement including a set of one
or more time-stamped variables associated with an
actionable mechanism running on the first executing
program;

generate a distributed program object including the set
of one or more time-stamped variables in memory;

transmit the distributed program object to at least one
additional executing program;

receive one or more data packets from the at least one
additional executing program;

adjust at least one time-stamped variables of the set of
one or more time-stamped variables of the distrib-
uted program object stored in memory based on the
one or more received data packets; and

transmit one or more data packets to the first executing
program, wherein the one or more data packets are
configured to cause the first executing program to
adjust at least one time-stamped variable of the one
or more time-stamped variables associated with the
actionable mechanism and adjust one or more char-
acteristics of the actionable mechanism associated
with the at least one adjusted time-stamped variable.

19. The stage automation system of claim 18, wherein the

stage automation server is further configured to:

receive one or more data packets from the first executing
program; and

adjust at least one time-stamped variable of the set of one
or more time-stamped variables of the distributed pro-
gram object stored in memory based on the one or more
received data packets.

20. A method comprising:

receiving, from a first executing program, a distributed
program object announcement including a set of one or
more time-stamped variables associated with an first
actionable mechanism running the first executing pro-
gram;

generating a distributed program object including the set
of one or more time-stamped variables in memory;
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transmitting the distributed program object to at least one
additional executing program;

receiving one or more data packets from the at least one
additional executing program;

adjusting at least one time-stamped variable of the one or
more time-stamped variables of the distributed pro-
gram object stored in memory based on the one or more
received data packets;

transmitting one or more data packets to the first execut-
ing program, wherein the one or more data packets are
configured to cause the first executing program to
adjust at least one time-stamped variable of the one or
more time-stamped variables associated with the
actionable mechanism; and

adjusting one or more characteristics of the actionable
mechanism associated with the at least one adjusted
time-stamped variable.
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